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PREFACE 

X-ray diffraction was first utilized in establishing the atomic structure 
of crystals. Later the technique of X-ray diffraction found other appli­
cations, however, and branched off from pure crystallography, extending 
to studies of imperfections in crystals, sizes of crystallites, and even to 
studies of the atomic structure of amorphous bodies. These fields of 
application of X-rays were made possible by further developments in 
the theory of the diffraction of X-rays by matter and also by improve­
ments in experimental methods. 

The small-angle scattering of X-rays is one of these fields that has 
been rather recently opened. Although the first observations were made 
in 1930 (295] particular attention has been given to this field only since 
the late l 930's. At the present time a large, ever-increasing number of 
laboratories are interested in small-angle scattering, as is shown by the 
number of references compiled in the bibliography of this book. 

For these reasons it seemed worth while to us to devote a monograph 
to this specific branch of X-ray diffraction. In fact, the theories that 
are used in this field are generally not discussed in textbooks on X-rays. 
They are quite distinct from the concepts that are customarily associated 
with X-ray diffraction; almost no use of Bragg's law will be made in this 
book, except to point out that the habit, so natural to crystallographers, 
of interpreting every detail in a diffraction pattern in terms of lattice 
distances sl1ould be discarded. The experimental aspect also is different; 
small-angle scattering in general cannot be studied with the usual 
apparatus of a crystallography laboratory; special cameras and some­
times special tubes are required. 

Since the late 1930's many theoretical works have appeared in this 
field; starting from different points of view, these have occasionally 
arrived at different, but non-contradictory, results. In a parallel man­
ner, apparatus based on quite varied principles have been used in ex­
perimental methods. We believed that it was now time to collect and 
evaluate the results that have been obtained from the different ap­
proaches. Our object has been to make the new research in this field 
more rapid and more efficient. Finally, we have also tried to evaluate 
the different attempts at applications in order to specify those which 
are the most fruitful. 

v 



vi PREFACE 

The plan of this book is as follows: in a first, short chapter we present 
the phenomenon of small-angle scattering and investigate its physical 
significance. 

The second chapter is devoted to a discussion of the progress realized 
in the theoretical study of small-angle scattering. We have tried to 
show the problems that have actually been solved and the limitations 
that now appear to us as difficult to overcome. 

In a third chapter we discuss the experimental methods that have been 
employed, trying not to treat all the details but giving the general prin­
ciples that should be satisfied in a small-angle scattering system. Evi­
dently these techniques will be similar whether the objective is the study 
of continuous scattering or the study of crystalline diffraction patterns. 
Thus it will be seen that problems are mentioned in this section which 
are not considered from a theoretical point of view in the second chapter. 

The fourth chapter is devoted to the problem of the interpretation of 
the experimental results and includes several examples which demonstrate 
the validity of the theoretical results. 

In a fifth chapter we compare the results of small-angle X-ray scat­
tering with the results of other physical methods for measuring particle 
sizes, such as interpretations of Debye-Scherrer line widths and measure­
ments with the electron microscope. 

The sixth and last chapter is devoted to a discussion of the applications 
of small-angle X-ray scattering. These are found in a number of diverse 
fields, such as chemistry, biology, and metallurgy. Some applications 
are of technical interest, as, for example, the study and testing of cata­
lysts. Others are of interest to theoretical physics, as, for example, the 
structure of liquid helium below the X-point. 

Although the object of the first chapters of this book is to present all 
the theoretical and experimental data necessary to the specialist in X-ray 
diffraction, the last chapter has been written without use of mathematics 
and without details of X-ray techniques so that it can be read without 
difficulty by a non-specialist. Our object has been to present the differ­
ent types of problems that can be studied by small-angle scattering and 
the results that have actually been obtained up to the present. Thus 
a chemist, biologist, or metallurgist should be able to decide from this 
whether or not any given problem can be approached effectively by 
means of X-rays. 

In this monograph we have tried more to give a logical, ordered pres­
entation of this subject than to give a complete compilation of all the 
published papers. Any gaps can be filled by the reader by referring to 
the bibliography. Let us point out that several general articles on small­
angle scattering have now appeared: the article by Hosemann [84] and 
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another by Porod [137] are particularly noted. As a result we have 
been able to shorten our discussion on several points, since the reader 
can find the complete development of these ideas in the works cited. 

When reference is made in the text to a formula in the same chapter, 
the formula is denoted by a single number, as, for example, 36. When 
the formula has been developed in a different chapter, it is denoted by a 
double number, such as 2.36 (equation 36 of Chapter 2). 

If a bibliographic reference appears as numbers within brackets, [ ], 
the reference will be found in the general bibliography at the end of the 
book. References appearing as "Author (year)" are tabulated in a 
special bibliography at the end of each chapter. 

Our sincere thanks are extended to Dr. R. S. Bear, Dr. W.W. Beeman, 
Dr. J. W. M. DuMond, Dr. A. N. J. Heyn, Dr. R. A. Van Nordstrand, 
and Dr. C. B. Walker for having made available to us papers which are 
as yet unpublished and drawings or original photographs which they have 
authorized us to reproduce here. Permission has been given to repro­
duce a number of illustrations from technical journals, for which we wish 
to thank both the authors and the publishers. 

We are particularly grateful to Professor P. P. Ewald, who encouraged 
us to publish this book, and to Professor W.W. Beeman, whose criticism 
and advice were very helpful in the final editing of our manuscript. 

Finally we want to thank Dr. C. B. Walker for the careful translation 
which has made the original manuscript more accessible to many readers. 

Paris, France 
August, 1955 

A. GurnrER 

G. FOURNET 



CONTENTS 

1. ORIGIN AND CHARACTERISTICS OF SMALL-ANGLE X-RAY 
SCATTERING 

2. GENERAL THEORY. 5 
2.1. SCATTERING PRODUCED BY A SINGLE PARTICLE 5 
2.1.1. Fixed Particle . 5 
2.1.1.1. Centrosymmetric particle 6 
2.1.2. Moving Particle 7 
2.1.2.l. Centrosymmetric particle 8 
2.1.2.2. Spherically symmetric particle 10 
2.1.2.3. Calculation of the average intensity 10 
2.1.2.4. The characteristic function of the particle -yo(r) 12 
2.1.2.5. General properties of F2(h) . 16 
2.1.2.6. A tabulation of the average intensity distributions for particles of 

different shapes 19 
2.1.2.7. Particle with preferred orientations 23 
2.1.3. Concept of a Radius of Gyration of a Particle 24 
2.1.3.1. Moving particle 24 
2.1.4. Spherically Symmetric Particle 28 
2.1.5. The Distribution of Scattering from a Fixed Particle 28 
2.2. SCATTERING PRODUCED BY A GROUP OF IDENTICAL PARTICLES 30 
2.2.1. General Results for Fluids 30 
2.2.l.1. Basic hypotheses . 30 
2.2.1.2. Consequences of hypothesis H1 31 
2.2.1.3. Consequences of hypothesis H2 32 
2.2.1.4. General expression for the scattered intensity 33 
2.2.2. Widely Separated Particles 35 
2.2.2.1. Expression for the scattered intensity 36 
2.2.2.2. Remarks on the Babinet principle of reciprocity 38 
2.2.3. Influence of the Closer Packing of Particles 40 
2.2.3.1. General considerations . 40 
2.2.3.2. Scattered intensity and the equation of state 42 
2.2.3.3. Limiting value for the intensity scattered at very small angles 46 
2.2.3.4. Thermodynamic expression for the intensity 48 
2.2.3.5. Fluids and crystals 52 
2.2.3.6. Secondary maxima 54 
2.2.3.7. Remarks on Fourier transformations . 57 
2.2.4. Particles Unrestricted by Hypotheses H1 and H2 60 
2.3. SCATTERING BY GROUPS COMPOSED OF SEVERAJ, TYPES OF PARTICLES 65 
2.3.1. General Theory 65 
2.3.2. Widely Separated Particles 66 
2.3.3. Influence of the Closer Packing of Particles 67 
2.4. GENERAL CASE 70 
2.4.1. Limiting Value of the Scattered Intensity at Very Small Angles 71 

ix 



x CONTENTS 

2.4.2. Calculation of the Scattered Intensity as a Function of p(X) 75 
2.4.3. Matter of Uniform Density and Random Distribution 78 

3. EXPERIMENT AL EQUIPMENT 83 
3.1. GENERAL CONSIDERATIONS . 83 
3.1.l. Operational Principles 83 
3.1.2. Influence of the Monochromatization of the Primary lladiation 85 
3.2. SYSTEMS EQUIPPED WITH COLLIMATORS 86 
3.2.1. Collimator Formed by Two Slits . 86 
3.2.1.1. Calculation of the optimum collimator 89 
3.2.2. Collimator with Circular Openings 91 
3.2.3. Collimator with Slits of Finite Height for the Study of Circularly 

Symmetrical Diffraction Patterns . 91 
3.3. SYSTEMS USING MONOCHROMATIC RADIATION 94 
3.3.1. Source of Monochromatic lladiation 94 
3.3.2. Balanced Filters 95 
3.3.3. Monochromatization by Crystalline Diffraction . 96 
3.3.3.1. Plane monochromator . 96 
3.3.3.2. Bent crystal monochromator 100 
3.3.3.3. Combination of two bent crystal monochromators . 102 
3.3.3.4. Monochromator with a point focus 104 
3.3.3.5. Double monochromator with plane crystals 109 
3.3.4. Measurement of the Total Scattered Intensity 110 
3.4. METHODS OF CORRECTION OF EXPERIMENTAL SCATTERING CURVES 111 
3.4.1. Correction for the Effect of Beam Width 112 
3.4.2. Correction for the Effect of Beam Height 114 
3.4.2.1. Slit correction for infinite height 116 
3.4.2.2. Case of a beam of arbitrary height 118 
3.5. CONSTRUCTION OF LOW-ANGLE SCATTERING SYSTEMS 120 
3.5.1. Slit Construction 120 
3.5.2. Stopping the Direct Beam 121 
3.5.3. Absolute Measurements 121 
3.5.4. Vacuum Apparatus . 123 

4. METHODS OF INTERPRETATION OF EXPERIMENTAL RESULTS 126 

4.1. IDENTICAL PARTICLES . 126 
4.1.1. Widely Separated, Identical Particles . 126 
4.1.1.1. Equal probability of all orientations . 126 
4.1.1.2. Identical particles with a definite orientation 134 
4.1.2. Dense Groups of Identical Particles 135 
4.1.2.1. Analysis of the scattering curve . 135 
4.1.2.2. Interpretation of a maximum in a scattering curve 140 
4.1.2.2.1. Interpretation in terms of an average distance . 141 
4.1.2.2.2. Interpretation in terms of an average t•olume 145 
4.1.2.2.3. Interpretation by means of an interparticle interference function 146 
4.1.2.2.4. Predictions of the correct theory . 146 
4.1.2.3. Conclusions 147 
4.2. GROUPS OF NON-IDENTICAL PARTICLES 148 
4.2.1. Determination of the Average Radius of Gyration for the Group of 

Particles 149 



CONTENTS xi 

4.2.2. Attempts at Determining the Statistical Distribution of the Particles 151 
4.2.3. Determination of the Specific Surface 156 

5. COMPARISOK OF THE RESULTS FROM SMALL-ANGLE SCAT­
TERI.'.'iG WITH THE RESULTS OF OTHER METHODS OF MEAS-
UREMENT OF SMALL PARTICLES 161 

5.1. COMPARISON WITH THE EI,ECTRON MICROSCOPE 161 
5.2. COMPARISON WITH THE METHOD OF DEBYE-SCHERRER LINE WIDTHS 163 

6. THE APPLICATIONS OF THE SMALL-ANGLE SCATTERING OF 
X-RAYS 167 

6.1. LARGE MOLECULES 167 
6.1.1. Dilute Solutions 167 
6.1.2. Concentrated Solutions 171 
6.2. HIGH POLYMERS 176 
6.2.1. Study of Solutions 176 
6.2.2. Study of Fibers . 177 
6.2.3. Ordered Arrangements of Micelles 183 
6.3. FINELY DISPERSED SOLIDS. CATALYSTS 187 
6.3.1. Carbons 188 
6.3.1.1. Practical study of carbon blacks 189 
6.3.1.2. Structure of different varieties of carbon 190 
6.3.2. Catalysts 192 
6.3.3. Colloidal Solutions 194 
6.4. SUBMICROSCOPIC HETEROGENEITIES IN SOLIDS. APPLICATIONS TO PHYS-

ICAL METALLURGY 195 
6.4.1. Heterogeneities in Pure Metals 195 
6.4.2. Heterogeneities in Solid Solutions . 197 
6.4.2.1. Equilibrium solid solutions 197 
6.4.2.2. Supersaturated solid solutions: Age-hardening . 199 
6.4.2.3. Structural characteristics directly related to the small-angle scat-

tering 200 
6.4.3. Examples of Small-Angle Scattering by Age-Hardening Alloys 203 
6.4.3.1. Aluminum-silver alloy: First stage of hardening 203 
6.4.3.2. Aluminum-silver alloy: Second stage of hardening . 208 
6.4.3.3. Aluminum-copper alloy 211 
6.5. ABSOLl:TE MEASL'REMENTS OF THE !:'!TENSITY OF SCATT~JRil\G AT ZERO 

ANGLK MEASUREMENTS OF THE COMPRESSIBILITY OF A FLUID 213 

BIBLIOGRAPHY 

AUTHOR IXDEX TO BIBLIOGHAPHY . 

AUTHOR INDEX TO n;xT 

SUBJECT INDEX 

217 

261 

265 

267 



1. ORIGIN AND CHARACTERISTICS OF 
SMALL-ANGLE X-RAY SCATTERING 

The fundamental relation describing the diffraction of X-rays by 
crystalline matter, ;. = 2d sin(), shows that the angle of diffraction, (}, 
varies inversely with the separation of the diffracting lattice planes. In 
ordinary crystals, particularly those of inorganic matter, the majority of 
the observed lattice spacings are of the same order of magnitude as the 
X-ray wavelengths generally e~ployed, so that the angles () are usually 
rather large. This advantageous condition has had important con­
sequences, both in the discovery of the phenomenon of X-ray diffraction 
and in its employment in studies of crystal i;tructures. 

The study of small-angle X-ray diffraction was introduced when it 
became desirable to detect large lattice spacings, of the order of tens or 
hundreds of interatomic distances. These spacings are found in some 
particular minerals and in certain complex molecules, such as the high 
polymers or proteins. In studies of the structures of macromolecular 
crystals the X-ray diffraction patterns must be extended to include very 
small angles. For example, with Cu Krx. radiation and a spacing of 100 A 
the diffraction angle (} is equal to 0.45°, and, with a period of 1000 A, 
() equals 0.045° or 2'. This illustrates the importance of small-angle 
scattering techniques in such fields as biochemistry, for example. 

One might consider using longer-wavelength X-rays to obtain larger 
diffraction angles for a given lattice spacing. This is not generally 
feasible, however, since the long-wavelength X-rays are absorbed to a 
very great extent in matter, which not only complicates the necessary 
diffraction apparatus and the means of detection of the X-rays but also 
considerably diminishes the intensity of the diffracted beam. For these 
practical reasons we must recognize a gap in the spectrum of useful 
electromagnetic radiation extending from wavelengths of the order of 2 A 
up to those of the remote ultraviolet. 

In studying crystals with large periodicities only the operational 
technique is different, since the interpretation of the patterns is based on 
the same principles as the usual structure determinations. The difficulties 
encountered are greater, however, as a result of the complexity of the 
unit cell and the imperfection of the crystals. One can intuitively picture 
"perfect" crystals as being formed only by the grouping of small numbers 
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2 SMALL-ANGLE SCATTERING OF X-RAYS 

of atoms bound by strong forces. In molecular and macromolecular 
crystals the degree of perfection is much less; only rarely is the theory of 
diffraction by perfect crystals a good approximation in small-angle 
diffraction phenomena. In this domain the theory of diffraction by 
imperfect crystals assumes particular importance, as is illustrated by the 
correlation of small-angle diffraction and the diffraction by imperfect 
crystals in an X-ray study of high polymers by Hosemann [84). Since 
diffraction by imperfect crystals is a theoretical problem not confined to 
small-angle scattering and one that has been well discussed elsewhere, 
we shall not examine it further in this monograph. 

If a sample has a non-periodic structure or if its lattice has been 
sufficiently perturbed, the diffraction patterns are not limited to spots or 
lines hut contain more or less extended regions of scattering. Let us 
examine schematically the origin of this scattering at small angles. 

It is well known that the diffraction pattern of a sample can he simply 
described in terms of a reciprocal, or Fourier, space. If we designate by 
p(X) the electronic density of the diffracting body at a point defined by the 
vector X, then A (h), the transform of p(x) at the point defined by the vector 
h in reciprocal space, is given by 

A(h) = J p(x)e-•h•J: dx (l) 

The theory of X-ray· diffraction is based on the fact that A (h) represents 
the amplitude of the diffracted radiation when h is defined as 

h = (2rr/A)(S - S0 ) 

where ). is the wavelength of the radiation and s0 and s are unit vectors in 
the direction of the incident and diffracted rays, respectively. The 
magnitude of h is then equal to (4rr sin 0)/)., where 20 is the scattering 
angle (the angle between the incident and scattered rays). Thus scattering 
at very small angles corresponds to small values of h. 

Equation l can be interpreted as follows: the scattered intensity 
observed for conditions corresponding to a certain value of h is equal to 
the square of the value of A (h), where A (h) is the component corresponding 
to h in the development of p(X) in a Fourier series. For small values of h, 
that is, at very small angles, the terms in p(x) that primarily control the 
magnitude of A(h) are those that show a periodicity of x = 2rr/h, a 
periodicity large with respect to the X-ray wavelength. These general 
considerations show again that diffraction at very small angles (less than a 
few degrees) gives information concerning the structure of matter on a 
scale that is large compared to the X-ray wavelength. 

It has been experimentally observed that certain samples cause an 
intense, continuous scattering below angles of the order of 2° without 
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producing the usual type of diffraction effects found on ordinary X-ray 
patterns. This was first ob::;erved by Krishnamurti [295] and Warren 
[171] for certain varieties of finely divided carbons, carbon blacks, and 
various other substances, all having in common the characteristic of being 
present as fine particles of submicroscopic size. Actually it was later 
recognized that the continuous scattering in the neighborhood of the direct 
beam is related to the existence of matter in the form of small particles, 
or, more generally, to the existence of heterogeneities in the matter, these 
heterogeneities having dimensions from several tens to several hundred 
times the X-ray wavelength. This offers another example of the general 
relation previously cited. 

It is relatively easy to describe qualitatively the central scattering due 
to the presence of small particles. This is analogous to the well-known 
phenomenon of optical diffraction, where a halo is produced by the passage 
of a light ray in a powder whose grain dimensions are of the order of a 
hundred times the wavelength of the light. 

Let us consider a particle bathed in a beam of X-rays; all the electrons 
are then sources of scattered waves. When the scattering direction is 
the same as that of the incident ray, these scattered rays are all in phase, 
and, as the scattering angle increases, the difference in phase between the 
various scattered waves also increases. The amplitude of the resultant 
scattered wave then decreases with increasing angle because of increasing 
destructive interference; it becomes zero when there are as many waves 
with phases between 0 and TT as there are between 7T and 277. This will 
occur for a scattering angle of the order of 20 = A(D, D being the 
"average dimension" of the particle, demonstrating how the study of the 
continuous central scattering offers a method for obtaining particle 
dimensions. 

This method is applicable only for particles whose sizes lie within 
certain limits. If D is too large the scattering is limited to angles so 
small as to be inaccessible to experiment, and if D is too small, of the 
order of several wavelengths, the scattering is widely spread but too weak 
to be observable. 

These rough qualitative conHiderations can be made more precise. To 
show exactly on which factors the small-angle scattering depends, let us 
consider a small particle that has been cut from a section of matter of 
electronic density p(x). Let us define a '"form factor" of this particle, 
s(x) (Ewald ( 1940) ), that has the value I whm the vector x lies within the 
particle and the Yalue 0 when x lies outside the particle. The amplitude 
of radiation scattered by this particle, as found from equation 1, is then 

A1 (h) = J p(x) s(x)e -ih·z dx (2) 
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There is a general theorem related to the operation of "folding" in the 
theory of Fourier transformations stating that, if A(h) and S(h) are 
respectively the Fourier transforms of p(x) and s(x), then 

A 1(h) = f A(y)S(h - y) dy (3) 

where y is a variable of integration. 
Given the dimensions of the region in which s(x) is different from zero, 

its transform, S(h), is fully determined, and, if the particle has dimensions 
of several tens to several hundreds of atomic diameters, S(h) will be 
different from zero only for very small values of h. 

Let us consider now the function A(h). If we first assume that the 
sample is of constant electronic density, p(x) = k, the transform A(h) 
acts as a Dirac delta-function,1 being zero everywhere except at h = 0, 
where it is infinite. For the more general case of a homogeneous body 
whose electronic density shows periodicities only on an atomic or molecular 
scale, the transform A(h) shows a large number of peaks. However, all 
these peaks except the one for h = 0 are produced for values of h well 
outside the domain in which S(h) has a non-zero value. 

Then, since A(y) is essentially a Dirac delta-function about y = 0, it 
may be predicted that around the origin of the reciprocal space the 
amplitude A1(h) is simply proportional to S(h), the function p(x) not 
intervening. The scattering around the center is thus practically independent 
of the "short-range order" of the ato~, depending only on the exterior form 
and dimensions of the particle. 

Small-angle scattering thus appears as a means of studying the dimen­
sions of colloidal particles, and it is in this direction that the technique has 
been generally exploited. It was quickly realized, however, that the 
assumptions adopted in the first theoretical approaches (widely separated, 
identical particles) were not being satisfied in the constitution of real 
samples. Interpretation of the scattering then demanded that the 
theory be generalized to take into account the diversity of particles sizes 
and the effect of the closer packing of the particles. Also, without 
speaking of particles, the possibility should be considered of obtaining an 
expression for the intensity scattered near the center in terms of the 
electronic density at all points of the sample. The theoretical approaches 
to these and other problems are discussed in the following chapter. 

REFERENCE FOR CHAPTER 

Ewald, P. P. (1940), Proc. Phys. Soc. (London), 52, 167. 

1 The Dime delta-function 6(x) is zero for x # 0, infinite for x = 0, and 
J6(x) dx = l. 



2. GENERAL TIIEORY 

In this study we shall consider only coherent scattering, neglecting 
Compton scattering which is always small at small angles. We shall 
discuss only the single-scattering process, disregarding the phenomenon of 
multiple scattering [31), [33). 

Incident rays 

Fig. 1. Diffraction by a single particle. 

We shall assume always that the transverse dimensions of the X-ray 
beam are large enough so that a large number of particles are irradiated, 
yet sufficiently small compared to the sample-receiver distances so that 
the beam can be likened to a single ray in the macrogeometry of the 
experimental apparatus. 

2.1. SCATIERING PRODUCED BY A SINGLE PARTICLE 
2.1.1. FIXED PARTICLE 

The classical formula in the theory of X-ray diffraction gives the ampli­
tude of radiation scattered by the point Mk (Fig. I) (of scattering factor 
fk) in the direction defined by the unit vector s as 

(1) 

where A. designates the amplitude scattered by one electron for the same 
conditions; 0, an arbitrary origin serving to describe the path differences 
between different rays; and s0, the unit vector defining the direction of 
the incident radiation. Let us designate by h the vector (2TT/A)(s - 80). 

If 20 represents the angle of scattering, .zS_ ss0, the magnitude of h is 
h = (47r sin O)/A. 

5 



6 SMALL-ANGLE SCATTERING OF X-RAYS 

The total amplitude of radiation scattered by a particle is then 

A(h) = _LAk = A.(h)_Ljke-ih·OMk (2) 
k k 

and the scattered intensity, the product of the amplitude A and its 
complex conjugate A*, is 

J(h) = A.2(h)_L_LJd1 cos (h · M,)'tl1) (3) 
k j 

The intensity scattered by one electron 
1 + cos2 20 

J8 (h) = A 0 2(h) = 7.90 x I0-26 J 0p-2 X 2 (4) 

is a function only of(), that is, of the magnitude of h; 10 represents the 
intensity of the incident beam, and p is the distance between the particle 
and receiver, expressed in centimeters. 

2.1.1.1. Centrosymmetric Particle 

If the particle possesses a center of symmetry, the expression for the 
diffracted amplitude can be simplified, for, if the origin is taken at the 
center of symmetry, then to each vector OMk there corresponds another 
vector -OMk. Therefore 

A(h) = _LAk = A.(h)L:f,. cos (h · OMk) 
k k 

We shall define the structure factor of the particle as the ratio of the 
total scattered amplitude to the amplitude of radiation scattered by one 
electron under the same conditions: 

2 Ak(h) 
F(h)--k __ 

- A,(h) 

The scattered intensity is then 

(5) 

J(h) = I.(h)[Lfk cos (h · 0Mk)]2 = I.(h)F2(h) (6) 
k 

The term "point Mk" has been used to refer to and define the structure 
of a particle. In considering a large particle the basic element in its 
description is the atom; the point Mk then refers to the "center of the 
kth atom," and the scattering factor fk is the scattering factor of this kth 
atom. As f k varies with the scattering angle, it should be denoted by 
fk(h). However, in the angular range where the structure factor of a 
large particle is different from zero, fk(h) can be effectively considered as a 
constant, equal to fk(O). For example, the structure factor of a molecule 
of human hemoglobin is effectively zero for all angles such that 
h > 0.15, and in this range the variation of the scattering factor of a 
carbon atom is less than 0.4 per cent. 
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When a small particle (an atom, for example) is being considered, the 
point Mk will refer to a volume element, small even on the angstrom 
scale, surrounding the point Mk. The scattering factor A then equals 
Pk dvk, where Pk is the electronic density of the particle in the neighborhood 
of the point Mk, and dvk is the volume element considered. 

In general we will find it convenient to describe the structure of a 
particle in terms of elements which are small enough so that the scattering 
factors of these elements can be considered as constants, independent of 
the angle of scattering, over the range in which the structure factor of the 
particle under consideration is different from zero. 

2.1.2. MOVING PARTICLE 

In the majority of low-angle scattering investigations, such as exami­
nations of solutions, suspensions, and emulsions, the particles are capable 
of motion. This motion can always be described as the sum of a trans­
lation and a rotation. A translation, defined by a vector V, introduces 
the multiplicative factor e-ih·V in the expression for the scattered 
amplitude, but this has no effect on the scattered intensity. Only 
rotations intervene in the calculation of an average intensity. 

When the probabilities of different orientations are defined, we can 
obtain from equations 3 or 6 the expression for the observed average 
intensity 

this relation defining the average of the square of the structure factor. 
-- --2 

There would be a temptation to describe F 2(h) as equal to F(h) , the 
square of the average of the structure factor. However, in order that the 
average of a product, ah, be equal to the product of the averages of a and 
b, it is necessary that the variables be completely independent, that is, 
that knowledge of the value of a in no way modifies the probabilities of the 
different values of b. This limitation is not met by the structure factors, 

since a = b = F(h). The only general case in which F 2 and F2 are 
equal is that pertaining to spherically symmetric particles, for then a 
rotation of the particle around its center does not modify the distribution 
of scattering centers and consequently leaves F(h) unchanged. For this 
case one finds 

In this section, the discussion is restricted almost entirely to considering 
all particle orientations as equally probable; a treatment of the more 
general case will be found at the end of the chapter. When this assump­
tion is made, the only mathematical problem is one of calculating the 
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average of the function, cos (h • r), as the vector r, of magnitude r, takes 
all orientations with equal probability. To calculate this average, let us 
define the angle between the vectors h and r as the angle rp, a variable 
with limits of 0 and Tr radians. The probability that this angle is con­
tained between the values cp and cp + dcp is equal to t sin cp dcp. The 
average of the phase function, cos (h. r), is then 

l" sin cp 
cos (hr cos rp) -- drp 

0 2 

f"'2 = Jo cos (hr cos cp) sin cp dcp 

1 f"'2 
= - hr Jo cos (hr cos cp) d(hr cos rp) 

1 Lo = - - cosudu 
hr hr 

leading to the classic result 
sin hr 

cos(h·r)=~ (7) 

The result depends only on the magnitude of h; the distribution of 
scattered intensity thus contains an axis of revolution coinciding with 
the incident beam. 

Equation 3 then resolves into the expression for F2(h) 1 expressed by 
Debye (1915), 

_ sin(h!MV I> 
F 2(h) = 2.2.fds J<-i 

k; hlM.tM1 1 
(8) 

2.1.2.l. Centrosymmetrlc Particle 

When a center of symmetry exists, application of equation 7 to equation 
5 results in a simple expression for the average of the structure factor: 

- _ "" / sin (h I OM:k ll 
F(h)- fJk hiOMkl (9) 

Generalization of this equation to include particles with a continuous 
distribution of scattering points leads to the following expression: 

- f sin (h I OMk !l 
F(h) = J/(Mk) h I OMk! dvk 

1 The notation! (h) will be used when the function depends only on the magnitude 
of h; the notationf(h) will demonstrate dependence of the function on both magnitude 
and direction of h. 
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The coefficient of the term sin hr/hr in this integral, obtained by con­
sidering the ensemble of points defined by I OMk \ = r, is 

ir+dr 
, p(Mk) dvk = ,O(r)411r2 dr 

this defining the function ,O(r). The generalization of equation 9 then 
takes the form -- f 00 sin hr 

F(h) = ,O(r) --47rr2 dr 
o hr 

(10) 

We see thus that the average of the structure factor is uniquely deter­
mined by the distribution of scattering centers as a function of their 
distance from the center of the particle. 

Equation 3 shows that the parameters possessing physical significance 
in the expression for the intensity are the distances \ M~1 I between 
each of the pairs of scattering centers. Nevertheless, for convenience of 
calculation one might on occasion prefer an expression for the intensity in 
which the distances \ OMk I and I OM; I are the essential parameters, 
where 0 designates the center of symmetry of the particle. Fournet [ 48) 
has shown this to be 

F 2(h)= 

' ' f, f ) 11(2 + l) 2"+ 11 /c 27>+ 1• ; P (cos <I> ) { 
00 J 1 (h\OM l)J 1 (hi OM I> } 

f; t k i p~O :p hv' I OMk 11 OM; I 2" kJ 

(11) 

where Pm represents the Legendre polynomial of order m, and <l>ki• the 
angle "i:,_MkOM1• [The Legendre polynomial of order m, P m(x), can be 
described as the coefficient of the term ym in the expansion of the function 
(1 - 2yx + y 2)-li2.] In certain cases this equation can be employed 
more simply than equation 8 (Fournet [48]). 

Fournet has employed equation 11 to illustrate the difference between 
-- --2 
F 2(h) and F(h) . If we ~aluate the sum of terms for p = 0, 

then, on transforming the Bessel functions into sine functions with the 

relation J 112(x) = v' (2/11x) sin x, we find that the sum of these terms is 
equal to 
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which is the square of the average of the structure factor. Thus we can 
write 

F 2(h) = F(h)2 

+ LL {!kf; f 7T(2p + !) J 2P+l/2(h I OMk ll J 2v+I/2(h I OM; ll p 2v (cos tl>k;)} 
k j p=l hV I OMk I I OM, I 

(12) 
2.1.2.2. Spherically Symmetric Particle 

A particularly important case to be considered-is that of the spherically 
symmetric particle. The electronic density at any point depends only on 
the distance r of this point from the center of the particle and can thus 
be denoted by p(r). 

The structure factor is then obtained from equation IO, replacing 
p(r) by p(r): 

i oo sin hr 
F(h) = p(r) -- 47Tr2 dr 

o hr 
(13) 

For this particular case, rotation of the particle does not modify the 
amplitude of scattered radiation, leading to the relation 

(14) 

2.1.2.3. Calculation of the Average Intensity 

The calculation of the average intensity can be made by several methods. 
(a) Analytical Method: The intensity scattered by the particle in an 

arbitrary position is calculated (see equation 3). Then the expression 
is averaged, taking into account the different orientations, in a manner 
similar to that employed by Guinier ([65], p. 195) and Fournet ([48], 
p. 45). This method is particularly simple when applied to a spherically 
symmetric particle; equations rn and 14 can then be used directly. 

(b) Geometrical 1V!ethod: Kratky and Porod [108]. Equation 8 can be 
generalized intuitively to allow the consideration of a particle of volume 
V, defined by an electronic density p(Mk); the resulting expression is 

- 2 i i . .· sin (h I M1'J; ll F (h) = p(.Mk)p(.M;) I I dvk dv; 
v v h Mr)I; 

(15) 

Let us consider the coefficient of sin hr/hr in the integral, assuming for 
the moment that p is a constant. This coefficient is obtained by con­
sidering the ensemble of terms where I MkM; I = r. The number of 
electrons at distances between r and r + dr from a volume element dvk 
of the particle is simply p{Vk(r + dr) - Vk(r)}, in which Vk(r) designates 
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the part of the volume of the particle situated at a distance smaller than 
or equal to r from dvk. When we now consider all possible positions of 
dvk, we can introduce a function, p(r), defined by the relation 

( p{Vk(r + dr) - Vk(r)}p dvk = p2p(r) dr (16) 
Jv 

The average of the square of the structure factor can then be expressed as -- f 00 sin hr 
F 2(h) = p2 p(r) -- dr (17) 

o hr 

In order to determine the physical significance of p(r), let us describe 
the volume element dv1 of equation 15 in a system of spherical coordinates 
centered on the point Mk, for which dv1 = r 2 dw dr. Equation 15 then 
becomes 

(18) 

The point M 1 in the integral with respect to dw dr is any point in the 
particle situated at a distance r from the point 1lfk, where 

OM; - OMk = r with I r I = r 

and the integral extends only over the volume V of the particle. 
integral can be extended over all space by '\\Tit.ing 

r { r 00 r4" sin hr } 
F 2(h) = Jv p(OMk) Jo Jo p(OMk + r)--,;;:-- r2 dw dr dvk 

This 

(19) 

on condition that p(OMk + r) is taken equal to the density of the particle 
p if the point OMk + r is inside the particle, and to zero if the point is 
outside. 

\Ve can now write that the partial integral 

fvp(OMk)p(OMk + r) dvk 

is equal to the product of p 2 times the volume V(r) of the solid common 
to the particle and to the "ghost" of the particle translated by the vector 
r (Wilson (1949)) (Fig. 2). V(r) is evidently a function of the direction of 
the vector r. If we introduce the average value, as defined by the 
relation 

L4" V(r) dw = 41T V(r) 

equation 19 becomes -- 100 
- sin hr 

F 2(h) = p2 V(r)-- 41Tr 2 dr 
o hr 
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Let us now introduce a function y 0(r), defined as 

V(r) V(r) 
Yo(r) = V(o) = V (20) 

Our last equation then becomes 

-- !"° sin hr F2(h) = V pa y0(r) -- 4m'll dr 
o hr 

(21) 

Fig. 2. A representation of the function V(r). 

A comparison of equations 17 and 21 shows that the functions p(r) and 
y0(r) are related by the following expression: 

(22) 

2.1.2.4. 'The Characteristic Function of the Particle yo(r) 

The characteristic function y0(r) was introduced by Porod [137]. It 
has no intuitive connection with the form of the particle. 

y 0(r) represents the probability that a point at a distance r in an arbi­
trary direction from a given point in the particle will itself also be in the 
particle. 

Let us consider an arbitrary line in the particle, terminating on its 
boundaries to form a segment of length M, and let us further consider 
an arbitrary point on this segment. The probability that a second point 
on the line at a distance r from the first is also inside the segment M is: 
y M(r) = 1 - (r/M) if r < M and is zero if r > M (Fig. 3). If g(M) 1 is 

1 A precise definition of g(M) is as follows: Through a point r in the particle 
there will pass an infinite set of randomly oriented lines. If gr(M) is the distri­
bution function for the lengths M of these lines, then g(M) is the average of this 
function as the point r takes all positions in the particle, i.e., 
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the distribution function for the group of such lines in the particle, then 

y 0(r) = ("' (1 - !.) g(M) dM 
JM~r M 

(23) 

It can be shown from equation 23 that 

g(M) = M (d2~0) 
dr r-M 

r 

Fig. 3 The function ')'.v(r) for a single segment of length M. 

The function y0(r) possesses the following general properties: 
l. At r = 0, y0(r) has the value unity; as r increases, y0(r) decreases, 

always staying positive, and becomes zero beyond the value r = R1 

corresponding to the line of maximum length through the particle. 
2. An integration from zero to infinity of the two sides of equation 16 

gives 

p2 L00
p(r)dr= J/Vpdvk=p 2V2 

which, when combined with equation 22, leads to the relation 

L"' 47T1'2y 0(r) dr = V 

3. The initial swpe of y0(r) is a function of the external surface of the 
particle, S. Let us trace around the particle the shell of thickness r 
(Fig. 4), where r is small with respect to the dimensions of the particle. 
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We can now calculate y 0 (r) by means of equation 16, neglecting the terms 
smaller than r3 • 

fl[Vk(r + dr) - Vk(r)]p dvk = 411p2Vr2y0(r) dr 

Fig. 4. Calculation of the initial slope of the characteristic 
function y 0(r). 

For a point Mk' in the inner volume V' = V - Sr 

Vk(r + dr) - Vk(r) = 47Tr2 dr 
and therefore 

{ p[ Vk(r + dr) - Vk(r)]p dvk = 411p2r 2( V - Sr) dr 
Jv· 

For a point llfk in the shell at a depth x from the surface (Fig. 4), 

Vk(r + dr) - V1k) = 27TT(r + x) dr 
and therefore 

{ p[Vk(r + dr) - Vk(r)]p dvk = i"'~211p2r(r + x)S dx dr = 311r3p2S dr 
Jahell~Sr x-o 
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Thus as a first approximation 

or 

l'o(r) 

4rrp2r 2Vy0(r) dr = 47Tp2r2 ( V - ~) dr 

y 0(r) = 1 - (S/4 V)r + · · · 

~ 
'\ 
~ 

" " " " O'--~~~~~~-,L-~~"-_,_~~===-~L-~-+ 
R 4R 

3 
2R r 

Fig. 5. The functions p(r) and y0(r) for the sphere of radius R. 

15 

(24) 

As an example, let us consider a spherical particle of radius R. The 

volume V(r) = V(r) common to two spheres ofradius R whose centers are 
separated by the distance r is given by a simple geometrical calculation as 

V(r) = (7r/12)(2R - r) 2(4R + r) 
Consequently, 

Yo(r) = 1 - :~ + 116 (~)3 
Equation 24 gives a similar result when V is replaced by (4/3)7T R3 and S 
by 4rrR2 (Fig. 5). 
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Figure 3 shows that, for the line in the particle of length M, JyM(r) dr 
= M /2. The integral of the characteristic function of the particle is thus 

y0(r) dr = -g(M) dM = ! Loo LOOM -
0 0 2 2 

(25) 

The integral of the characteristic function is therefore equal to one-half 
of an average length of all the lines contained in the particles. 

Thus for a spherical particle 

It can be verified that (3/2)R is the average length of the lines passing 
through all the points in a sphere in all directions and terminating on its 
boundaries. 

We see therefore that this function shows properties analogous to 
those of the Fourier transform of the profiles of Debye-Scherrer lines 
broadened by the effect of the small size of a crystal (Bertaut (1950)). 

2.1.2.5. General Properties of ¢(h) 

From these general properties of the function y 0(r) we can deduce the 

following consequences for the function }'2(h): 

1. The value of F 2(h) at h = 0, F 2(0), is 

F 2(0) = V p2 L 00 47Tr2y0(r) dr = V2p2 

This is the square of the total number of electrons in the particle. All 
the scattered waves are in phase and the amplitudes are added. 

2. The value of F 2(h) at small values of h is found from equation 21 
by making the expansion 

sin hr h 2r 2 h4r4 
--,;:;:-- = 1 - 6 + 120 + ... 

Then, by introducing the factor F 2(0), this equation becomes 

{ h2 1 loo 
F2(h) = F2(0) 1 - - - 47Tr4y0(r) dr 

6 v 0 

h4 1 ioo + - - 477r8y0(r) dr + 
120 v 0 

... } (21a) 
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Thus, as h increases from zero, F 2(h) decreases following a parabolic 
curve. The curvature of this curve is determined by an integral in which 
the values of y 0(r) for larger play a predominant part because of the factor 
r4 • In §2.1.3.1 we shall see a simple and much more important expression 

for the curvature of F 2(h) at small angles. 

3. A useful representation of the value of F 2(h) for large values of h 
can also be obtained from the function y0(r). This comes from the fact 

that, since hF2(h) and ry 0(r) are related by a Fourier transform, the high­

angle part of the curve of F 2(h) corresponds to the part of the curve of 
y0(r) at small values of r, and an approximate expression for this part of 
y0 (r) is known. 

y0 (r) can be expressed as a polynomial in r, of which the first two 
terms are known: 

y0(r) = 1 - (S/4 V)r + · · · 
We also know that y0(r) becomes zero beyond r = R1 . Therefore, by 
making the substitutions hr = y and hR1 = u, equation 21 becomes 

- 47T v p2 l" ( s r1.y3 ) F2(h) = -- y - - y 2 + - + · · · sin y dy 
h3 o 4 Vh h2 

By integrating by parts the following formulas can be established: 

L" y sin y dy = -u cos u + sin u 

L" y2 sin y dy = -u2 cos u + 2u sin u + 2 cos u - 2 

i" yn sin y dy = -un cos u + nun-l sin u - L" n(n - l)yn-2 sin y dy 

Therefore 
-- 2Trp 2S A f1(u,h) cos u f 2(u,h) sin u 
F 2(h) = --y;;t + h6 + ... + ha + h3 

At large values of h the principal term in F 2(h) is 2Trp 2S/h4 , to which 
are added damped oscillations of pseudoperiod hR1/27r. The average 

curve of the continuous decrease of F 2(h) is therefore given as 

(26) 

This depends ·uniquely on the external surface of the particle. 
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4. A Fourier inversion of equation 21 gives 

2 i"" hF2(h) ry0(r) = - --2- sin hr dh 
7T 0 47Tp v 

1 i"" -- sin hr y0(r) = - 2- 2- h2F2(h)-h-dh 
2TTpVo r 

Evaluated at r = 0, this becomes 

L'' h1F2(h) dh = 27T2p2V 

(27) 

(28) 

The integral of h2 F 2(h} depends only on the volume of the particle a.nd 
not on its form. This is a. particular illustration of a general theorem 
regarding the integral in reciprocal space of the intensity scattered by an 
arbitrary object, which relates this integral to the total number of scatter­
ing electrons in the object. 

5. Let us calculate an average value l of the length of all the lines 

contained in a particle by evaluating the integral L"" y0(r) dr. By making 

the substitution y =hr, the integral of equation 27 becomes 

l = 2 ["' y0(r) dr = ~ ["" ["' hF2(h) sin hr dh dr 
Jo 7T p V Jo Jo r 

1 l"'siny i"' -= -- -- dy hF2(h) dh 
TT 2p2 V o y o 

or 

1 f"' l = -- hF2(h) dh 
27Tp2 V o 

(29) 

This integral can be expressed in terms of the total energy E scattered in 
all the low-angle scattering region. On a film placed at a distance p from 
the sample, the area that receives the rays scattered through the small 
angles contained between 20 and 20 + d(20) can be written to a first 
approximation as 

or 
da !:::'. 2TTp228 d(28) 

da !:::'. (J.2/277) p 2h dh 

Equations 4 and 6 then give 

E = J.(h)I F 2(h) da = ;: 10 x 7.90 x 10-2sf F2(h)hdh 

= 7.90 X 10-2s;.21op2vz (30) 
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All the results of the preceding discussion are still valid if the electronic 
density of the particle is not a constant but shows fluctuations around an 
average value p, if these fluctuations are such that statistically the sur­
roundings of all the atoms in the particle are the same. 

If, on the other hand, p varies from one part to another of the particle 
(for example, a hollow particle, etc.), equation 16 can be generalized by 
introducing the function nk(r), which represents the number of electrons 
situated at distances smaller than or equal to r from the volume element 
dvk enclosing the point Mk. In order to modify our notation as little as 
possible, we redefine p(r) by the relation 

f [nk(r + dr) - nk(r)]p(Mk) dvk = p2p(r) dr 

where pis the average electronic density. F 2(h) can now be obtained by 
replacing p by p in equation 17, but it is necessary to note carefully 
that p(r) is no longer uniquely :determined by the geometry of the particle. 

2.1.2.6. A Tabulation of the Average Intensity Distributions for Particles of 
Different Shapes 

We list below the average intensity distributions for particles of different 
shapes which take all orientationR with equal probability. The intensity 

distribution function tabulated is i(h), rather than F 2(h), which is defined 
by the relation 

where n = V pis the total number of electrons in the particle; i(O) is then 
always equal to unity. 

(a) Sphere of radius R (Rayleigh (1914)) (Fig. 6), 

• _ 2 _ [ sin hR - hR cos hR] 2 _ 9n [J312 (hR)] 2 

i(h) - <l> (hR) - 3 h3 R3 - 2 (hR)312 (31) 

(b) Ellipsoid of revolution, axes 2a, 2a, 2va (Guinier [65]) (Fig. 7), 

("'2 
i(h) =Jo <1> 2 (ha\/ cos2 a + v2 sin2 0) cos ad(} (32) 

Another equation has been developed for this case by Schull and Roess 
[155], employing hypergeometric functions. 

(c) Cylinders ofrevolution of diameter 2R and height 2H (Fournet [48]) 

. 1"'2 sin2 (hHcos0) 4J12(hRsin0). (}d£J 
i(h) = X sm u 

o h2H2 cos2 (j h2 R 2 sin2 (} 
(33) 
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~Mean asymptotic curve 
I 
I 

I 
I 
I 
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\~ \ V Exponential approximation 
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' 

10 hR 

,1 
\I 

i. 
I 5 

5 10 15 

Fig. 6. Scattered intensity from a sphere of radius R, ((> 1(hR). The 
curve is drawn with different scales for the various ranges of hR 

( x 1000 for 4 < hR < IO; x 10,000 for hR > IO). 
h1R2 

hR 

Expcnential approximation: e - -5- (equation 39); mean asymptotic 

curve: ~ (h~)• (equation 26). 

(d) Rod of infinitesimal transverse dimensions and length 2H (Neuge­
bauer (1943)) (Fig. 8a) 

where 

. Si(2hH) sin2 (hH) (a4) 
i(h) = hH - h2H'1. 

l"' sin t 
Si(x) = -dt 

0 t 
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(e) Flat disc of infinitesimal thickness and diameter 2R (Kratky and 
Porod [108]) (Fig. Sb) 

. 2 [ 1 ] i(h) = h2R 2 1 - hRJ1(2hR) (35) 

These various functions i(h) behave according to the predictions of the 
general study: at h = 0, i(h) is unity and the tangent to the curve is 

l.O 

0.5 Exponential approximation 

ha-v¥-
Fig. 7. Scattered intensity from ellipsoids of revolution of axes 
2a, 2a, 2va. The abscissae have been chosen so that the radius of gyration 

of each ellipsoid corresponds to the same length (§2.l.3.l, p. 26). 
h1a' 2+•• 

Exponential approximation: e - 5. -3- . 

horizontal, and, as h increases, i(h) decreases parabo1ically, tending 
finally towards zero along a curve which oscillates somewhat about a 
curve varying as h-4 • For narrow cylinders or thin discs whose small 
dimension is €, this asymptotic law is valid only if h ~ (1/€). If in these 
cases his large with respect to l/H or l/R but small with respect to 1/€, 
equations 34 and 35 show that the curves decrease respectively as h-1 

(cylinder) and h-2 (disc). 
An examination of Figs. 6, 7, and 8 shows that particles of very different 

forms can have nearly the same scattering curves. 
Tables 1-3 will facilitate numerical calculations of equations 31 

through 35. 
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Table 1 
sin x - x cos x 

<I>(.r) = 3 xa and cIJ2(x) 

x !IJ(x) cIJ2(x) x !IJ(x) cIJ2(x) 

0.000 1.000 1.000 2.100 0.622 0.388 
0.100 0.999 0.998 2.250 0.575 0.330 
0.200 0.996 0.992 2.500 0.499 0.248 
0.300 0.991 0.982 3.000 0.346 0.119 
0.400 0.983 0.968 3.200 0.288 0.083 
0.500 0.975 0.951 3.500 0.205 0.042 
0.600 0.964 0.930 4.000 0.0875 0.0076 
0.700 0.952 0.906 4.493 0.0000 0.0000 
0.800 0.937 0.879 5.000 -0.057 0 0.003 25 
0.900 0.921 0.849 5.600 -0.085 0 0.007 22 
1.000 0.903 0.816 5.760 -0.086 3 0.007 45 
1.200 0.863 0.745 5.800 -0.086 0 0.007 40 
1.400 0.816 0.668 6.000 -0.084 3 0.007 10 
1.600 0.766 0.587 7.300 -0.023 0 0.000 53 
1.800 0.702 0.502 7.720 -0.000 0.000 00 
2.000 0.654 0.427 

Table 2 

'( Si(2x) sin2 x 
ix)=-- - --

x x2 

x i(x) x i(x) 

0.0 1.000 1.6 0.768 
0.2 0.996 1.8 0.719 
0.4 0.984 2.0 0.673 
0.6 0.961 2.2 0.627 
0.8 0.931 2.4 0.583 
1.0 0.898 3.0 0.473 
1.2 0.858 3.5 0.406 
1.4 0.813 4.0 0.357 

Table 3 
x Ji(x) x Jl(x) 

0.0 0.0000 2.6 0.4708 
0.2 0.0995 2.8 0.4097 
0.4 0.1960 3.0 0.3391 
0.6 0.2867 3.2 0.2613 
0.8 0.3688 3.4 0.1792 
1.0 0.4401 3.6 0.0955 
1.2 0.4983 3.8 0.0128 
1.4 0.5419 4.0 -0.0660 
1.6 0.5699 4.2 -0.1386 
1.8 0.5815 4.4 -0.2028 
2.0 0.5767 4.6 -0.2566 
2.2 0.5560 4.8 -0.2984 
2.4 0.5202 5.0 -0.3276 
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0 5 10 hR 

(a) 

1.0 

~Asymptotic curve 

\ 
~ 

0.5 

(b) 

Fig. 8. (a) Scattered intensity from rods of length 2H. Asymptotic 
curve: 7r/(2hH) (<lquation 34). (b) Scattered intensity from fiat circular 

discs of radius R. Asymptotic curve: 2/(h 2R 2 ) (equation 35). 

2.1.2.7. Particle with Preferred Orientations 

23 

For simplicity we shall consider only particles with a center of sym­
metry; the structure factor is then given by equation 5. Let us fix the 
particle in a system of three mutually perpendicular axes, Ox, Oy, Oz. The 
space in which the particle is found is described by a second set of three 
mutually perpendicular axes, OX, 0 Y, OZ. The centers of these two 
systems of axes can be made to coincide without loss of generality, since 
only relative orientations arc of interest. Euler's angles, x, 0, and <p, 
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will be employed to mark tlie orientation of the particle system with 
respect to the spatial system. (In this paragraph () will designate only 
the Euler angle, the scattering angle appearing only in terms of h.) We 
arbitrarily orient the spatial axes so that h is directed along the axis 
OZ. The amplitude scattered by a particle of orientation, (), cp, can be 
denoted as: A.(h)F(h, (), cp). Then, by designating by P 1(h, ()) and 
P 2(h, rp) the probability density functions of() and rp (where the notation 
P 1(h, 0) is to recall the particular choice of OZ), the average intensity is 
found as 

This approach will be useful whenever exterior physical conditions 
impose a preferred orientation as, for example, when molecules are 
oriented by the flow of a solution. 

2.1.3. CONCEPT OF A RADIUS OF GYRATION OF A PARTICLE 
2.1.3.1. Moving Particle 

We shall consider primarily particles for which all orientations are 
equally probable. 

Let us rewrite equation 8, expanding the trigonometric function in a 
power series: 

(37) 

The first term of the expansion is equal to CL:fk) 2, that is, F 2(0). 
k 

To describe the second term, let us consider a point, 0, chosen so that 
2,fkOMk = 0. The point 0 then defines the electronic center of mass of 
k 

the particle. Employing this point as an origin, we can ~Tite 

IM~; 12 =IOMk1 2 +IOM;12 - 21OMk11 om:, I cos <I>ki 

In the second term of our expansion in equation 37 the contribution of 
the factor I OMk I 2 is 

h2 h2 
- 6 't'f.!d; I OMk 12 = - 6 f.hl.fk I OMk 12 
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The contribution of the factor I OM; 12 is the same. The contribution of 
the angularly dependent term is zero, since 

22.,2,fd; I OMk 11 OM; I cos <l>ki = 22,f; I OM; I {2.fk I OMk I cos <l>k;} 
k j j k 

and the sum over k can be recognized as being the projection of 2.,fkOMk 
on the vector OM;· Thus equation 37 reduces to the following: 

or 

We can now introduce the parameter R0 , defined by the relation 

(38) 

By analogy with classical mechanics, R 0 can be considered as the electronic 
radius of gyration of the particle about its electronic center of mass. We 
can thus hope to have a good approximation by writing (Guinier [65]) 

h2R0' 
-3-

(39) 

where n = 2,fk, the total number of electrons in the particle. This 
k 

relation, the law of Guinier, coincides with the exact expression for terms 
up to the 4th power of h and, like the exact. expression, vanishes with 
increasing h. 

Equation, 39 can be derived from the general relation, equation 12, in 

which F 2(h) and F(h)2 were expressed in an explicit manner. For 
simplicity we shall limit the derivation to the case of particles possessing 
a center of symmetry. 

The principal part of the double summation over indices k and j 
involves terms in h4 or still higher powers. 'l'h1ts any constant term and 
the term in h2 in the expression for the average intensity must arise from the 
square of the average amplitude and consequently must depend only on the 
distribution of scattering centers as a function of their distance ~ 
center of the particle (see equation 9). The ratio of the coeffic#f.at~~ 
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term involving h2 to the constant term should then be a universal function 
of this distribution. A calculation 

shows that this function is simply 

1 2.,/,.r.,.2 1 
- _,. __ = -Ro2 
3 2.,/,. 3 

"' 
confirming the results of the preceding paragraph. 

The curves of the scattering by two particles having the same radius 
of gyration then coincide at very small angles, and it is only the tails of 
the curves, due to terms in h4 , h6, etc., which show the influence of the 
forms of the particles. When the scattering curves of particles of two 
different forms are to be compared, it is thus essential to choose two 
particles having the same radius of gyration (see Fig. 7). For example, 
to a sphere of radius R, one should compare an ellipsoid of revolution of 
axes 

J 3 
2 --R 

2 + v2 
J '3 

2 --R 
2 + v2 

2vJ 3 
2 R 2+v 

v being the ratio of the unequal axes. Certain authors (Kratky and 
Porod (108)) have compared reduced curves (curves of the function 
i(h), chosen so that the abscissae for both are the same for the ordinate 
i(h) = 1/2), but this arbitrary choice does not permit the separation of the 
influences of the dimensions and of the forms of the particles. 

In order to eliminate any possible confusion, we want now to emphasize 
separately two points: 

1. The validity of the concept of a radius of gyration. We must re­
emphasize that the concept of a radius of gyration is sound, whatever 
the form of the particle (viz., Guinier (65], p. 191, or the discussion of 
equation 12), since it seems that some authors have recognized this 
concept only for spherical particles. The magnitude of the slope of the 
curve of log J(h) vs. h2 at the origin is always equal to one-third of the 
square of the radius of gyration. The influence of the form of the particle 
manifests itself particularly at larger values of h in the form of deviations 
of the curve oflog J(h) from the extrapolation of its tangent at the origin. 

2. The validity of the approximate law of Guinier. To illustrate this, 
let us consider a family of ellipsoids of revolution of the same radius of 
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gyration, R0 , and of half axes R,R, and vR; v and Rare thus variables. 
The first terms in the power series describing the intensity are given by 

[ 
h2 R 2 ] 

F 2(h) = F(0) 2 1 - -T + · · · 

In this family of ellipsoids there are two for which the expression for the 
scattered intensity coincides with the law of Guinier (equation 39) up to 
terms of the 6th power of h; these are the flat ellipsoid defined by v = 0.24 
and the elongated ellipsoid, where v = 1.88. 

Again, in a family of cylinders of revolution of diameter 2R and height 
2H there is a cylinder for which the same precision of agreement is found; 

this is the cylinder for which H/R = V30/11 = 1.65. 
These examples show that the particles that obey the approximate 

law of Guinier closely are those that are nearly isodiametric (see Fig. 6 
for the case of a sphere). 

On the other hand, rather wide differences will be found for the curves 
of very elongated ellipsoids, thin discs, and narrow cylinders. 

Finally, let us call attention to the fact that experiments have verified 
that the exponential law, equation 39, is a very good approximation for a 
large number of scattering curves, a surprisingly large number in view of 
the approximations involved in the derivation. 

The precision with which a radius of gyration can be measured in an 
experiment depends to a certain extent on the form of the particles. The 
determination of the radius of gyration to the same degree of precision 
for a series of particles having the same radius of gyration but different 
forms requires information on the scattering at smaller and smaller angles, 
the further the particle departs from a spherical form. 

Kratky and Porod [108] have given an approximate formula for particles 
in the form of narrow cylinders or thin discs which is valid for values of h 
large with respect to the reciprocal of the large particle dimension but 
small with respect to the reciprocal of the small dimension. In its 
dependence on the small dimension of the particle this scattering function 
behaves as though the low-angle region of the curve (the exponential 
approximation) were involved, whereas in its dependence on the large 
dimension the scattering behaves as though the tail of the curve (the 
curves in h-1 and h-2, respectively, for cylinders and discs) were involved. 

An accurate calculation based on equation 33 gives as the relation for 
narrow cylinders of diameter 2R and length 2H, containing n electrons 
each, 

(40) 
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and for thin discs of diameter 2R and thickness 2H 

- 2 sin2(hH) 2n2 _ h2II' 
F 2h ,_, n 2 -- • ,_, -- e 3 

- h2R 2 (hH) 2 - h2R2 
(41) 

Let us also recall the equation relating the radius of gyration of a 
particle and its characteristic function y 0{r). By comparing the expansion 

of F 2(h), equation 2la, p. 16, with equation 39, this is found to be 

1 i"' f"' r4yo(r) dr 
Ro2 = - 41Tr4yo(r) dr = io 

2V o "' 
2 r 2y0(r) dr 

0 

(42) 

We note that the radius of gyration can then be defined either by 
equation 39, where, following the method of Guinier, it is determined 
from a trace of the curve of log I vs. h2, or by equation 42, in which case 
it is convenient to determine the function y0(r) with the aid of equation 
27 and then R0 2 with equation 42. 

2.1.4. SPHERICALLY SYMMETRIC PARTICLE 

The calculation of the average intensity is considerably simplified when 
the particle possesses spherical symmetry. The electronic density 
function p(r) is then sufficient to determine A(h) and, consequently, 
F 2(h). Conversely, a Fourier transformation of equation 13 gives 

1 i"' p(r) = - 2 hF(h) sin hr dh 
27T r o 

(43) 

and the radius of gyration, from its definition, is determined by the 
relation 

i"'r4 p(r)dr 
R 2_~0 ___ _ 

o - Loo r2p(r) dr 

2.1.5. THE DISTRIBUTION OF SCATTERING FROM A FIXED PARTICLE 

Figure 9 shows the geometrical relations between the film, the orienta­
tion of the particle, and the distribution of scattered intensity on the film. 
We are interested primarily in the distribution of scattered radiation 
along the line AB. The corresponding scattering vectors h are all con­
tained in the plane fixed by B0 and AB. The limiting direction of h 
as the scattering angle 2(J tends to zero is marked by the unit vector 10 

perpendicular to Bo (since 4 hs0 = (7r/2) - (J; see Fig. 1). 
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Let us consider how the concept of a radius of gyration appears under 
these circumstances by studying the series expansion of equation 3. An 
analogous case has already been considered in §2.1.3, giving immediately 
the result 

where the point 0 is defined by the relation 

Then 

Fig. 9. The relation between the orientation of a particle and the 
distribution of scattered intensity in the plane of observation. 

F2(b) ffk (h • OMk)2 

F2(0) = 1 - 2.Jk + ... 
k 

As a· first approximation, the scalar product b · OMk for small values of 
20 is equal to the product of the magnitude h and the scalar product 
10 • OMk. This scalar product, 10 • OMk, is equal in magnitude to the 
distance dk(l0 ) of the point Mk from the plane Il (10 ) through 0 perpen­
dicular to 10 • The notation dk(l0 ) serves to recall the dependence on the 
orientation of 10• We can now write the expansion of F 2(h) as 

F 2(h) f fk dk 2(10) 
--= l-h2 + ... 
F2(0) 2.A 

k 

The coefficient of the term in h2 can be designated as the square of an 
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average inertial distance, D(l0), of the particle with respect to the par­
ticular plane I1(10). Then, as in the law of Guinier, this expression can 
be written to a good approximation as 

(44) 

Equation 44 explains the distribution of scattered radiation found on 
the film of Fig. 9. The particle is presenting its largest dimension in the 
direction parallel to AB. The average inertial distance, the factor of 
primary importance in determining the scattered intensity, is thus also 
a maximum for this particular direction. Equation 44 then shows that 
it is along this line AB that the decrease in intensity with increasing h 
will be the most rapid. 

2.2. SCATTERING PRODUCED BY A GROUP OF IDENTICAL PARTICLES 
2.2.1. GENERAL RESULTS FOR FLUIDS' 

2.2.1.1. Basic Hypotheses 

Scattering experiments are rarely cond~-cted with a single particle as 
the scatterer; thus it is of more practical importance to calculate the 
intensity scattered by a group of particles. In this section we shall 
consider the simplest such case, that of a group of identical particles. 

We shall also restrict our study by requiring that the structure of the 
ensemble of particles satisfy two hypotheses. To simplify later references, 
these hypotheses will be denoted as H1 and H 2• 

Hypothesis H1 • We shall assume that: 
1. All particles, each possessing a center of symmetry, can, with equal 

probability take all possible orientations. 
2. The knowledge of the relative positions of two particles in no way 

modifies the probabilities of their different orientations. 
The second part of hypothesis H1 is always realized for spherically 

symmetric particles. For the more general case it would seem that, if 
the particles are not too densely packed and if their shapes are not too 
anisotropic, this hypothesis should be good at least as a first approximation. 

Hypothesis H 2• We shall assume that the group of particles is iso­
tropic and without order at long distances. 

In order to clarify hypothesis H 2 , let us define Rk as the vector from 
an arbitrary origin to the center of the kth particle. The vector joining 
the centers of the kth and jth particles is then (Rk - R,). Hypothesis 
H 2 then requires that all vectors (Rk - R 1) of the same magnitude have 
an equal probability of orientation in all directions (isotropic) and that 
for long distances (viz., 1000 A) the probability offinding vectors (Rk - R;) 

1 We include in the term "fluids" gases, liquids, solutions, and suspensions. Thus 
the word fluid refers to all matter satisfying hypotheses H 1 and H 2 • 
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of a given magnitude, r, is a continuous function of rand is nearly constant. 
This hypothesis is well justified for fluids. 

2.2.1.2. Consequences of Hypothesis H 1 

Let us consider a group of particles, each possessing a center of 
symmetry. We shall designate by rk1 the vector extending from the 
center of the kth particle to a point l of scattering factor fki in the same 
particle. 

The amplitude of radiation scattered by this group of particles is then 
given as (cf. equation 2) 

A(h) = A.(h) L {2:fk1e -ih· (R>+r.,l} 
k l 

since the position of the scattering point, l, is defined by the vector sum 

Rk + rkz· 
By virtue of the center of symmetry of each particle, this can be written 

as 

A(h) = A.(h),2:e-ih·R•2:.fk1 cos (h · rk1) (45) 
k l 

The sum 2fkz cos (h • rk1) corresponds to the structure factor Fk(h) of 
l 

the kth particle (see equation 5); since the part.ides are identical, the 
index k serves only to mark the kth particle. 

The mathematical formulations of equation 45 and equation 2 are 
identical, with the sum over the index l playing the role of the quantity 
fk, so the scattered intensity can be found easily by analogy with equatio113: 

/(h) = I.(h),2:2:[2:fki cos (h · rk 1)][Lf;m cos (h · r,ml1 cos [h · (Rk - R,)] 
k j l "' (46) 

In equation 46 indices k and j refer to particles, arnl indiees l and m 
refer to the different seattering points i11 partides k and j, respectively. 

The intensity caleulated above is that furnishe(l by one certain con­
figuration of the ensemble of particles. In the comse of time this 
configuration changes, the partieles shifting awl changing orientation. 
Thus we can observe only average intensities. lVe shall discuss here only 
the general method of eakulating the average intensity; for details, sec• 
Fournet [ 48]. 

First we separate the terms where k = j in equation 46. These terms 
represent the intensity seattered by one particle multiplied by the average 
number of particles being examinecl (Hee §2.2.1.3). For the calculation 
of the other terms, use is made of the second part of hypothesiH H1 , 

which t>nablt>s us to separate the calculation of the averaging of the 
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orientations of the particles from the averaging of the positions of the 
particles. The final result is: 

/(h) = I,(h){N F 2(h) + F(hJ2:2: 2 cos [h · (Rk - R;)]} (47) 
kN,k 

where F 2(h) and F(h)2 are the quantities defined earlier (p. 7). The 
problem that remains is the calculation of the average of the double sum 
of terms. 

2.2.~.3. Consequences of Hypothesis H, 

Let us consider two very small volume elements, ~vk and ~v;, located 
by vectors Rk and R1, which are contained in the volume V irradiated by 
the X-rays. The contribution of this elementary pair, ~vk, ~v1, to the 
desired average is nk; cos [h · (Rk - R1)], where nk; is the number of pairs 
of particles found in these volume elements, one particle being in ~vk and 
the other in ~v1 . Now, letting the elementary volumes ~vk and ~v1 
approach the volume elements dvk and dv1, small even on an atomic scale, 
we introduce a probability function Pk;• in terms of which the probability 
of finding a particle in dvk and at the same time a different particle in 
dv1 is: p 2 =Pk; dvk dv1• It is essential to consider that the particle in 
dv1 is different from that in dvk, since we have excluded the case of k = j 
in the double sum above. The sum of the cosine terms is now found as 
the integral (see equation 7) 

r r sin (h I Rk - R; ll 
JvJv hjRk-R;I Pk;dvkdv; 

The volume element dvk being infinitesimal, we shall describe a particle 
as being in dvk if the center of the particle is found there. 

Before calculating Pk;• let us carefully define the experimental con­
ditions. We shall designate by V 0 the total volume offered to the particles. 
This volume contains a well-defined number of particles, N 0• The 
volume V 0 must be distinguished from the volume V actually irradiated 
by the X-rays. 

1. If V 0 is smaller than or equal to V, then it follows that N = N 0 , 

where N is the number of particles in V. 
2. If V 0 is larger than V, the case generally met experimentally, then 

N cannot be known exactly, as previous authors have implicitly assumed. 
Only statistical information, such as an average value of N, can be known. 

We shall assume that V0 is large as compared with V, as is true of most 
experiments, and in any event a situation which is easily realizable. Let 
us now evaluate the probability Pk; dvk dv;. We know that the probability 
of occurrence of an ensemble of two events is equal to the probability of 
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the first multiplied by the probability of the second as modified by the 
knowledge that the first event exists. The probability of occurrence of the 
first event, finding a particle in dvk, is (N 0/ V 0) dvk. When this is realized: 

1. The remaining N 0 - 1 particles are distributed through a volume 
V0 - dvk. 

2. If the centers of the two volumes dvk and dv;, each containing a 
particle, are separated by a distance r, the centers of the particles are 
separated by a distance approximately equal tor. It is obvious that the 
different distances (and uniquely the distances, if the matter being 
examined is composed of only one phase) cannot all be equally probable; 
if the particles are spheres of radius R, the distance between particles 
cannot be. less than 2R. This behavior will be described by a function 
P(r) such that 

N 0 N 0 - l 
Pt; dvk dv; = - dvk P(IRk - R;j) dv; 

V0 V0 - dvk 
(48) 

The manner in which P(r) has been introduced shows that this function 
will tend towards unity as r increases, for then the condition discussed 
above disappears or, rather, does not play a part. We can neglect dvk 
with respect to V0 , and usually 1 is negligible compared to N 0 (see §2.4). 

By introducing the average volume offered to each particle, Vi = ( V 0/N 0), 

a quantity characteristic of the ensemble of particles, equation 48 
reduces to 

(49) 

and the desired average of the double sum becomes 

ii sinhrk. dvkdv1 2 2 cos [h • (Rk - R;)] = --' P(rt;) - -
kj*k V V hrki Vi Vi 

(50) 

2.2.1.4. General Expression for the Scattered Intensity 

Since P(r) tends toward unity as r increases, the structure of the 
ensemble of particles might be better characterized by the function 
(1 - P(r)), this function being different from zero only for small values of 
r. By making the substitution P(r) = 1 - (1 - P(r)) equation 50 takes 
on the following form: 
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J,et us examine separately each of these terms. 

is 
FirBt term: The contribution of this term to the total scattered intensity 

I h h F- 2 i i sin hrk; dvkdv; 
1( ) =I.( ) (h) ----

v V hrki V1 Vl 

which (cf. equation 15) can be interpreted as representing the intensity 
scattered by a "particle" of volume V with a uniform electronic density, 

p = F(h)/v1• Given the size of this particle, / 1(h) is effectively zero for 
all obBervable angleB. (Fournet [48] discusses the reasoning of Compton 
and Allison (1935) on this subject.) 

It is important to note the simple, general interpretation of the term 
/ 1(h). A further discussion of this factor is given by James (1948), 
where the scattering of a spherical volume is considered. To find simply 
and schematically the limit h0 , beyond which / 1(h) is negligible, it might 
be considered that for h = h0 the largest phase difference between rays 
scattered by two points in the particle will be of the order of 211 radians. 
Then, if the average dimension of the volume irradiated is designated by 
D 0 , h0 is determined by h0 = 211/D0• 

Second term: Let us consider first the integration with respect to dv11:: 

f sin hrki [l _ Ph;)] dvk 
Jv hrk; v1 

Since the function [l - P(rk;)] approaches zero rapidly as r increases, by 
neglecting boundary effects this term can be written as 

i 00 sin hr 4m2 
--[l - P(r)]- dr 

O hr V1 
(51) 

independent of the index j. The further integration with respect to j 

Jdv. 
then results simply in multiplying equation 51 by a factor -2, which is 

- V1 

equal to N, the average number of particles in the irradiated volume V. 
The final relation for the scattered intensity is thus (Fournet [44]) 

/(h) = I 1(h) + I.(h)N {F2(h) - F(h)2 f"' sin hr [l - P(r)]4m2 dr} (52) v1 Jo hr 

/ 1(h) is completely unobservable, and so for h > h0 this becomes 

- - {- F(h)2 i"' sin hr } /(h) = I.(h)N F2(h) - -- -- [l - P(r)]411r2 dr 
V1 0 hr 

(53) 

If the particles considered are spherically symmetric, we have seen 
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( §2.1.2) that there is no distinction between the average of the square of 

the structure factor F 2(h) and the square of the average of the structure 

factor F(h)2 • For this case equation 53 can be simplified to the following: 

l(h) = I 0(h)N F 2(h) {1 - !._ ( 00 [l - P(r)] sin hr 417r2 dr} 
vi Jo hr 

(54) 

This expression was derived by Zernicke and Prins [309] and by Debye 
and Mencke [269]. Equation 53 thus appears as a generalization of this 
last expression. 

The integral figuring in equations 53 and 54 has the dimensions of a. 
volume. We shall define this as the volume of perturbation, v2(h): 

i "' sin hr 
v2(h) = [l - P(r)] -- 47TT2 dr 

o hr 

We shall see in §2.2.3.1 that this function, which has also been called the 
"characteristic volume" (Porod [137]), is actually a function of two 
variables: v2 = v2(h, vi)· 

To summarize, we have shown that the scattered intensity can be 
expressed as a sum of two terms: 

l(h) = I.(h)F(h)2 ( ( sin hrt1dvkdv1 

Jv Jv hrk; vi vi 

the first of these terms being negligible with respect to the second for 
h > h0• The value of h0 is defined by the relation h0D 0 = 277, D 0 being 
the average dimension of the irradiated volume. In the remainder of this 
section we shall designate by "intensity I(h)" only the second term of 
equation 52, and when a misunderstanding is possible we shall employ 
the expression "observable intensity" to denote this second term. 

2.2.2. WIDELY SEPARATED PARTICLES 

The general expression which we have just established shows the 
influence of interparticle interferences, through the intermediary of 
v2(h), on the scattered intensity. Let us now consider in detail the case of 
rather widely separated particles, for which the expression for the 
intensity takes on a particularly simple form. We shall later indicate the 
criterion which defines "widely separated particles," but for the moment 
we can indicate that a good example of such a system is a gas under low 
pressure. 



36 SMALL-ANGLE SCATTERING OF X-RAYS 

2.2.2.1. Expression for the Scattered Intensity 

If the particles are widely separated, the average volume Vi offered to 
each will be large. Any irregularities of the function [l - P(r)] demon­
strate that certain interparticle distances are favored while others are less 
probable. These irregularities are the more marked, the more closely the 
particles are packed, for, in order to contain more matter in a given volume, 
the degree of organization of this matter must be increased. 

We see thus for two reasons that the ratio of v2(h) to Vi is very small 
for widely separated particles. More rigorously, the part of v2(h) 
inyolving the integration from r = 0 to r equal to the smallest particle 
diameter will not vary as the particles become more separated, but, since 
v1 increases, the corresponding part of the ratio of v2(h) to Vi decreases. 
In the limit of large separations, we find the classical result 

I(h) = I.(h)NF2(h) (55) 

where we recall that this expression, derived from equation 53, is valid 
only for h > h0 (h0 has been defined on p. 34). 

The intensity of radiation scattered by an ensemble of widely separated 
particle8 is thus identical on a relative scale to the mean intensity scattered by 
one isolated partick; in obtaining the intensity relative to an ensemble of 
particles it is necessary only to multiply the intensity scattered by one 
particle by the average number of particles, N. 

Realizing the practical importance of this simple result, it is opportune 
to underline its significance and to recognize its limits of validity. Later 
(§2.2.3.2) we shall demonstrate the connection existing between this 
expression and the equation of state for ideal gases, pvi = kT. 

Let us compare equation 55 with a well-known problem in optics. It 
is often indicated in the literature that the intensity of scattering by 
identical elements distributed at random is formed by the addition of the 
intensities scattered by each element. This is not always correct, for 

- ---
if h = 0, we are led to the result /(0) = N F 2(0), whereas the exact result 

is known to be /(0) = N 2 F 2(0). The usual reasoning behind the above 
statement consists of describing the double sum 

L L cos (h. (Rk - Ri)) 
.I: j #i: 

as containing as many positive terms as negative terms, so that con­
sequently the sum is zero. But if h = 0 all the cosine terms are equal to 
unity and this reasoning is no longer true. As a criterion for applicability 
we can say that this reasoning is correct when the largest phase difference 
between particles reaches27Tradians; that is, if D 0 is the average dimension 
of the volume offer"<l to the particles, the reasoning is correct when 
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h > (2TT/D0) = h0 . This is simply a restatement of the result that was 
established in §2.2.1.3. 

The classical reasoning is a little too simplified, if not incorrect, and it 
should be replaced with that due to Lord Rayleigh (1919), who tries first 
to calculate the probability that the intensity will be between I and I + dl 
and then afterwards calculates the average intensity. By correcting one 
error and slightly modifying the reasoning of Lord Rayleigh to render it 
applicable to the problem of X-ray scattering, equation 55 can be obtained 
as a first approximation when h > h0• The corrective terms that appear 

are negligible when N is very large (Fournet [ 48]). 

Remarks 
For the simple case of widely separated, spherical particles, the scattered intensity 

(see equation 47) is given by 

l(h) = 1.(h)F2(h){N + :E :E cos (h • (R. - R,))} 
kjiok 

Let us compare the mathematical structure of the square of the structure factor of 
the particle, F 2 (h). with the bracketed term. The intensity scattered by a spherically 
symmetric particle, whose p scattering centers each have the same scattering factor 
f, can be described as (cf. equation 3) 

J,(h)F'(h) = 1,(h)/2 :E :E cos (h • M,Mml 
lm 

= l.(h){pf' + / 2 :E :E cos (h • (rm - r,))} 
l miol 

(56) 

The previous discussion shows that the second term is negligible wi~h respect to 
the first when h is greater than h 1 = 211"/rl, rl being the average dimension of the 
particle. For angles where h is the order of h 1/IO, however, each of the terms of 
equation 56 has approximately the same value, so that the term pf' is negligible 
compared to the double sum. 

The total scattered intensity is thus 

J(h) = I,(h)j2 {p + :E :E cos (h •(rm - r,))} 
I miol 

x {N + :E :E cos (h · (R. - R;)l} 
k jiok 

(57) 

The symmetry of this relation is evident; mathematically the description is the 
same, whether for an ensemble of points in a particle or for an ensemble of particles, 
but the physical results are very different. 

For 0 < h < h 0 , the values of the bracket concerning the ensemble of particles 
are not interesting to the physicist, since they cannot be reached experimentally. 
For h 0 < h < h1 , the values of the bracket concerning the ensemble of points in a 
particle are essential ancl permit the determination of the radius of gyration. For 
an angle of the order of h 1/10 and for quasi-homogeneous particles, the second term 
of the first bracket and the first term of the second bracket are the terms that are 
important in this expression. The two parts of this equation are shown separately 
in Fig. 10, in which curve a refers to the first factor and curve b to the second. 
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2.2.2.2. Remarks on the Babinet Principle of Reciprocity 

This principle will be considered at this point not because it is applicable 
uniquely to ensembles of widely separated particles but rather because our 
recent concern with just such ensembles permits us to treat it very quickly. 

First term,equation 57 

h 
Curve a 

Second term, equation 57 

N 

ho 
Curve b 

Fig. IO. A graphical representation of the two factors of equation 57. 
For clarity h0 has been greatly exaggerated. 

Let us first recall the simplest enunciation of Babinet's theorem: 
complementary objects produce the same diffraction effects. The con­
cept of complementary objects will be more precisely defined in the follow­
ing paragraph, but we can give a simple illustration of a pair of such 
objects: a screen pierced with circular holes, and an ensemble of circular 
discs, each disc corresponding in size and position to a particular hole. 

The general expression for the amplitude scattered by matter con­
tained in a volume V is 

A1(h) = A,(h) f/1(r)e-ih·r dr 
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where p1(r) is the electronic density in the volume element dr whose 
position is fixed by the vector r. Let us now consider a complementary 
space, whose electronic density p2(r) is defined as: p2(r) = p0 - p1(r), 
where p0 is a constant. The amplitude scattered by this complementary 
space is then 

A2(h) = A.(h) fv[Po - P1(r)]e-ih·r dr 

The problem now is to compare 

11(h) = A1(h) A1*(h) 
and 

12(h) = A 2(h) A 2*(h) 
If we write 

A0(h) = A1(h) + A 2(h) = A.(h) f p0e-ih·r dr 
• v 

then the function, 

is a maximum for h = 0 
[10(0) = I.(O)V2p0 2] 

decreases rapidly with increasing h, and effectively becomes zero beyond 
an angle defined by h0 = 27T/ D0 , D 0 being the average dimension of V. 

We can now calculate the following: 

12(h) = [A 0(h) - A1(h)][A 0*(h) - A1*(h)] 

= 11(h) + 10(h) - A1(h)A 0*(h) - A0(h)A1*(h) (58) 

If h > h0 , J 0(h) is effectively zero, and consequently A0(h) and A 0*(h) 
are also zero. Then J1(h) =I 2(h), the usual statement of the reciprocity 
principle. However, if h < h0 , equation 58 shows that this principle is 
no longer true. 

Thus the principle of reciprocity can be applied only to calculate the 
intensity scattered at angles such that the corresponding values of h are 
greater than the limit 27T/ D 0• The dimension D 0 refers to the average 
dimension of the volume in which a "complementary" electronic density 
is defined. 

In the experimental systems generally used for the study of low-angle 
scattering, the principle of reciprocity can be applied to an ensemble of 
particles (that is, an ensemble of cavities in a homogeneous medium can be 
considered equally well in place of an ensemble of particles), since the 
intervening dimension is defined by the transverse dimension of the beam, 
generally of the order of 1 mm. wide, but it cannot be applied to each single 
particle (as, for example, replacing a spherical particle of 100 A diameter 
containing a concentric spherical cavity of 20 A diameter by a simple 
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sphere of 20 A diameter). This latter method has been employed by 
some authors, leading to incorrect results; we cite for example the article 
of Kratky and Porod ([108], p. 45.ff), in which these authors tried to 
evaluate the intensity scattered by a "finite packing of lamellae" of 
submicroscopic dimensions by replacing the lamellae with the interstices 
contained between them. In a later article, however, Porod is in agree­
ment with the ideas expressed here. 

Another application of these ideas is the calculation of the scattering 
from particles which, instead of being in a vacuum, are im'TflR,rsed in a 
homogeneous medium of electronic density Po (for example, the solvent of a 
colloidal suspension). The scattering body can be considered as the 
superposition of a continuous medium of density Po and particles of 
density p - Po· The scattered amplitude is the sum of the amplitudes 
scattered by the continuous medium and by the fictitious particles. The 
first of these is zero throughout the region accessible to experiment. The 
observed scattering is therefore simply that due to the particles of density 
p - Po· All the equations which have been established are thus valid on 
condition that p is considered as the difference between the electronic density 
of the particle and that of the surrounding medium. The small-angle 
scattering becomes zero if the particles have a density equivalent to that 
of the surrounding medium, even if they have a quite different atomic 
structure. 

2.2.3. INFLUENCE OF THE CLOSER PACKING OF PARTICLES 
2.2.3.1. General Considerations 

We have just treated the simple case of widely separated particles, in 
which the total scattered intensity, proportional to the intensity relative 
to a single particle, generally decreases continuously with increasing 
scattering angle. It is only for the very particular case of particles with 
a strongly marked internal structure (for example, CC14 molecules) that 
intensity maxima at non-zero angles can be observed for widely separated 
particles. 

It is well known that numerous liquids whose elementary particles 
possess simple structures give rise to maxima of intensity at non-zero 
angles. Zernicke and Prins [309] established their well-known formula 
(equation 54) in order to explain these results. We should point out that 
it is difficult to study the effect of the closer packing of particles on the 
scattering distribution from this equation; when the concentration of 
matter increases, v1 decreases, but there is al,so an unknown change in the 
function P(r). Writing the equation for the intensity in the form given by 
Zernicke and Prins could lead to the assumption that the concentration 
of matter has no influence on the function P(r). To eliminate the 
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possibility of this assumption, we propose to modify slightly the expression 
of the Zernicke-Prins formula, writing: 

l(h) = I.(h)N F 2(h) {1 - ~ roo [l - P(r, V1)] sin hr 47Tr2 dr} v1 Jo hr 
(59) 

in which the functional dependence of P(r, v1) appears explicitly. 
Numerous authors have studied the influence of the mutual approach of 

particles on the distribution of scattered radiation, assuming a priori a 
function P(r) more or less well chosen but independent of the concen­
tration of the matter. Among the latest attempts we may cite that of 
Yudowitch [186]. We believe that it is difficult to determine the validity 
of the results thus obtained, for in these studies of the influence of con­
centration on the intensity l(h), one of the most important functions 
determining this intensity has been assumed a priori to be independent of 
concentration. 

The real problem then in any such study is to obtain the function 
P(r, v1 ). This problem is difficult. We feel certain that its solution 
will require a profound analysis of the thermodynamics of ensembles of 
particles. \Ve can hope that by such an approach, equations 53 and 54, 
which may be called "Zernicke-Prins type equations," concerning only 
the geometry of the ensembles ?f particles, can be transformed into 
"thermodynamic equations" by the introduction of certain intrinsic 
characteristics of the particles. 

It is first necessary to find variables that can intervene in a definition of 
P(r). We have already noted one such variable, v1. The function P(r) 
is connected to the probability of seeing a certain configuration of two 
particles realized, so that the calculation of probabilities introduces itself 
naturally into the problem. If Boltzmann statistics are employed we 
need to introduce both the temperature and the potential energy ll>(r) of 
a pair of particles whose centers are separated by a distance r. 

The problem of calculating the function P(r) from v1 , T, and ll>(r) is the 
central problem of the latest kinetic theories of fluids (Yvon (1935), 
Kirkwood (1935), Born and Green [259]). Our own problem is not limited 
simply to the case of fluids; we are interested to a large extent in solutions 
of large molecules, suspensions, etc. In each of these cases the functions 
P(r) and IJ>(r) can always be defined. We shall introduce later the 
variable, pressure, and the equation of state of the matter being con­
sidered. This presents no difficulty in problems concerning gases or 
liquids. Moreover, it is well known that in solutions the osmotic pressure 
plays a role analogous to that of pressure in fluids and that the equation of 
state of ideal solutions can be expressed in the form pv1 = kT. If 
there is difficulty in extending these concepts to the study of emulsions, 
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we can always formally define the pressure by evaluating the change of 
free energy of the system with respect to the total volume offered. 

In the different kinetic theories of fluids cited above, the integral 
equation determining P(r) is of the form, 

P(r) = F (P(r) , <l>(r)) 
Vi kT 

(60) 

where F designates an integration of the functions P(r)/v1 and <l>(r)/k'J'. 
In establishing this equation it has been necessary to make a physical 
approximation known as the "principle of superposition." We shall 
not give the details of this principle, for these can be found in the article 
of Kirkwood and Boggs (1942) in which this principle is described and 
employed for the first time. We may describe equation 60 as having been 
established in a very general manner from considerations of classical 
Boltzmann statistics, the only assumption being that of the Yalidity of 
the principle of superposition. 

2.2.3.2. Scattered Intensity and the Equation of State 

We have just seen that the kinetic theories of fluids furnish a relation 
between P(r) and <l>(r); this shows the manner in which the relation 
between the function l(h) and <l>(r) can be established. At this point it 
seems advantageous to introduce the equation of state, a more familiar 
quantity than the corresponding mutual potential energy function. 
This can be written in the following form (Green [273], Yvon (1949)): 

kT 1 i"' p = - - - 2 P(r)<I>' (r) 47Tr3 dr 
v1 6v1 0 

(61) 

If the integral is neglected, this reduces simply to the ideal gas law, 

kT NAkT RT 
p=-=--=-

V1 N Avl V 

where NA is Avogadro's number. 
Let us first consider the case for which the function <l>(r) is identically 

equal to zero. The equation determining P(r) then states that P(r) - 1. 
Two important relations resulting from this particular function P(r) can 
now be derived: 

1. The expression for the scattered intensity becomes (see equation 53) 

I(h) = I.(h)NF2(h) (55) 

the result for widely separated particles. 
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2. The equation of state, obtained from the general expression of 
equation 61, becomes 

(62) 
the ideal gas law. 

This result shows that the domains of validity of equation 55 and 
equation 62 are the same. These two expressions are rigorously true only 
for point particles, small even on the angstrom scale, as is required when 
the potential energy is defined as <l>(r) = 0, independent of r. In 
§2.2.3.4 we shall discuss the conditions under which equation 55 is a good 
approximation. 

Let us remark also that if an attempt is made to find a function P(r) 
which is independent of v1 and which is to be defined by equation 60, the 
only possible solution will be found to be P(r) = 1. 

Now let us leave the case of widely separated particles and try to treat 
the general case. By developing P(r, v1) in a series expansion with v1 as 
the variable, we find 

P(r, v1) = P 0(:r) + v1 Pi(r) + · · · 
where the term P0(r) is identical to e-IT>(r)/kT. 

Thus a first approximation of equation 60 is 

P(r, V1) = e-lll(r)/kT 

For this approximation the equation of state becomes 

[ (21T)s12 p(O)] 
pv1 = kT 1 - -- -

2 v1 

and the scattered intensity distribution is (cf. equation 54) 

[ (217)312 ] 
l(h) = I.(h)N F 2(h) 1 + ~ p(h) 

where the function p(h) is defined by the relation 

2 i"" hp(h) = --:= roc(r) sin hr dr 
v21T o 

with 
oc(r) = e-IT>(r)JltT - 1 

(63) 

(64) 

(65) 

An approximate solution for hard spheres of radius R and volume v0 , 

with no interactions other than impenetrability, has been considered by 
Debye [265]. With the probability function defined (cf. equation 63) as 

P(r) = 0 

P(r) = 1 

0 < r < 2R 

r>2R 
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equations 31 and 64 lead to the following expression for the scattered 
intensity: 

(66) 

where the function cf>(x) is described by equation 31. We shall consider 
the validity of this expression in §2.2.3.3. 

The solution P(r, v1 ) = e-'11(r)/kT has been proposed as a general 
solution by Raman (1924), who believed that the solution was exact. 
His oversight was the following: if an ensemble of only two particles is 
considered, the probability that these particles are at a distance r from 
one another is truly e-<ll(r)/kT, but, if an ensemble of a large number of 
particles is considered, the probability that any two particles are at a 
distance r cannot be the same, since interactions with the other particles 
must be taken into account. 

A second approximation of equation 60 based on the more complete 
theories of Born and Green [259) leads to the following result (Fournet 
[ 44 ], [ 45), [ 49]): 

I(h) = I,(h)N{F2(h) + F(h)2 _"fi~h) } (67) 
L'1(27T) - e{J(h) 

where e designates a constant approximately equal to unity. 
For the simple case of spherically symmetric particles, equation 67 

becomes 

Let us emphasize that equations 67 and 68 have been derived from 
certain results of the theory of Born and Green with no additional 
physical hypotheses or mathematical simplifications. 

A simple outline of the derivation of equation 67 is as follows: 
The modification added by Rodriguez (1949) to the simple calculation of Green 

consisted in writing 
(69) 

In obtainingf(r) from equation 60 the value of the function tX{r) = e-<r>(r)/kT - 1 is 
assumed to be different from zero only for small values of r, and in certain cases the 
product tX(r) f{r) is assumed to be replaceable by the terms tX(r) (E - 1), thus defining 
(e - 1) as a mean value of f(r) for small values of r. From this, the function f(r) 
can be described by the Fourier transform 

l r 00 e 2h{3 2(h) . 
rf(r) = v'2; J_°" v,( 217)_312 _ e{i(h) sm hr dh (70) 

neglecting terms inf2(r),f"(r), etc. 
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The calculation of v,(h) requires a knowledge of the function [P(r) - I]. From 
equation 69, 

or 
P(r) - I = [o:(r) + I] [I + f(r) + · · · ] - I 

P(r) - 1 "" £o:(r) + f(r) 
Thus we can write 

v (h) I (2,,.)3 " 2 l"' - -'- = ,,,-- . 1- r[Eo:(r) + f(r)] sin hr dh 
Vi Vi V 27T 0 

which, by means of equations 65 and 70, becomes 

_ v,(h) = ~ (2,,.)312 [£h/3(h) -+- h £ 2/3'(h) ] 
Vi h v1 ' v1 (2,,.)-3 12 - £{J(h) 

Equation 67 is easily found from this last equation. 

(71) 

Let us try to analyze quite generally the different relations which we 
have established by employing a criterion often used in the statistical 
theory of ensembles (theory of fluids, the order-disorder transformations 
in alloys, magnetism): the inclusion in the calculation of particles in units, 
pairs, triplets, etc. We must point out that a perfect theory should take 
account of all such possible groups. 

Equation 55, correct for widely separated particles, takes account of 
particles only in units; that is, all interactions between particles have been 
neglected. 

The discussion we have given of the work of Raman with respect to 
equation 64 shows that this expression takes into account. particles 
considered in units and in pairs; that is, interactions between particles 
have been limited to a sum of interactions between pairs of particles 
isolated in space. 

In considering the validity of equations 67 and 68 we must first point 
out that the Kirkwood-Boggs principle of superposition used in establishing 
equation 60 is presented in the form of a relation, good to a first approxi­
mation, between the properties of particles considered in pairs and the 
properties of particles considered in triplets. Now in the form that 
Rodriguez has given to the theory of Born and Green, one determines the 
second approximation to the functionf(r), defined by equation 60 and the 
relation 

P(r) = e-«>(r)/kTef(r) 

The first appmximation, that of f(r) - 0, furnished the solution of 
Raman, which takes into account only the influence of doublet terms. 
Thus we can affirm that equations 67 and 68, established from the theory 
of Born and Green, take account of triplet terms at least to a first approxi­
mation, contrary to the opinion of Oster and Riley [128]. 

To summarize these results, we have listed the expressions of certain 
equations of state and the corresponding expressions for the scattered 
intensity. 
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Summary 
EQUATION OF STATE 

pV= RT 

SCATTERED INTENSITY 

l(h) = 1,(h)NF2(h) 

[ (2.,,.)3f2(J(O)] 
p V = RT 1 - ----

2v1 
l(h) = l,(h)N F 2(h) [ 1 + < 2:~312 {J(h)] 

Born and Green 
--- 1 

l(h) = l,(h)NF2(h) (2.,,.) 312 
1 - --E{J(h) 

vl 

2.2.3.3. Limiting Value for the Intensity Scattered at Very Small Angles 

We have just examined the relation between the equation of state and 
the scattered intensity, 1(h). Let us now restrict the problem to deter­
mining which thermodynamic variables are related to 1(0). From a 
previously established relation, equation 53, we find 

1(0) = 1,(0)N {n2 - n2 v~~)} = 1.(0)Nn2{1 - v2~~)} 
n being the number of electrons contained in a particle. 

The function v2(0) can be evaluated as follows: we have seen (§2.2.1.3) 
that Pk; dvk dv; represents the probability that there is at the same time 
a particle in dvk and a different particle in dv1• The double integral of 
Pk; dvk dv1 extended over the domain V should then give the average 
number of pairs of particles existing in the volume V. Designating by N 
the number of particles in V at a certain instant, we find that 

r r Pk, dvk dv; = r r P(rk;) dvk dv; = N(N - 1) = N 2 - N Jv Jv Jv Jv v1 v1 

since the average of a sum always equals the sum of the averages of each 
term. 

Now by introducing the function (1 - P(r)) in terms of these quantities, 
we have 

- - J~f ~ f ~I ~ N 2 - N = - - - - [l - P(rk;)] -
V1 V1 V1 V1 

By making use of the calculations employed in §2.2.1.4, and neglecting 
only very small terms, we obtain the following expression: 

N 2 - N = N2 - N f"'[l - P(r)] 411r2 dr .lo V1 

from which we find 

1 i 00 V2(0) - N 2 + N2 + N N2 - N2 
- [1- P(r)]411r2 dr=-- = = 1----
v1 o Vi N N 
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With this value of v2(0), we find that 

J(O) = J.(O)n2(N2 - N2) = J.(O)n2(N - N)2 (72) 

This result was first established by the work of Einstein and Smoluchow­
ski; other papers developing this topic which might be cited are those 
of Zernicke and Prins [309), Bhatia and Krishnan (1948), Yvon (1947), 
and Fournet and Guinier [53). 

Equation 72, which is a result of the hypotheses H1 and H 2 imposed on 
the structure of ensembles of particles, shows that the observable scattered 
intensity (seep. 35) at very small angles is a consequence of the existence 
of fluctuations in the sample. A thermodynamic description of /(0) can 
be found by recalling a classical result of the kinetic theory of gases,1 

kT (N-N) 2 (N-N) 2 

yfl+···= ~ = N2 +·" (73) 

where fl is the isothermal coefficient of compressibility, 

fl=_~ (oV) 
V Op T 

V being the total volume offered to the gas. If N is large and the matter 
is not near its critical point, the terms neglected in equation 73 are small 
when one writes 

-kT 
/(0) = J.(O)n2N - fJ (74) 

V1 

thus establishing a simple relation between /(0) and the isothermal com­
pressibility. 

Values for /(0) have been predicted by several different theories. The 
expression given by Debye for a model of hard spheres is (cf. equation 66) 

/(0) = I.(O)n2N ( 1 - 8~0) 
where v0 is the volume of each sphere. (The coefficient, 8, has been 
omitted in several references in the literature.) The maximum value of 
v0/v1, that for close-packed hexagonal or cubic systems, is 0.74, leading to 
the prediction of negative intensities for a large domain (v0/v1 > 0.125). 
The linear model of Kratky and Porod [108), with assumptions similar to 
those of Debye, leads to a similar factor: (l -2l0/l1), [23 = 8]; since the 
maximum possible value of l0/l1 is unity, again negative intensities are 
possible. 

1 See, for example, R. C. Tolman, The Principles of Statistical Mechanics, Oxford, 
1946, p. 647. 
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Equations 67 and 68 give negative results if Vi is smaller than (27T)3' 2 

E/3(0). This is not a valid criticism, however, since Fournet [49] has 
shown that the passage of the Zernl.cke-Prins type equation to equations 
67 and 68 is possible only if there are no roots to the following equation: 

Vi - (27T)3f2E{J(h) = 0 

When roots to this equation exist, as happens for liquids, equation 67 is 
no longer correct and must be replaced by another which does not predict 
negative intensities (for details, see the article of Fournet cited above). 

2.2.3.4. Thermodynamic Expression for the Intensity 

Let us now consider the general possibilities of employing equation 68, 

I(h) = I,(h)NF2(h) \ 12 
V1 - (27T) E{J(h) 

(68) 

in a study of spherical· particles.i Fournet [45], [49] has employed this 
equation together with the potential energy function <l>(r) determined by 
Lennard-Jones (1937) to predict correctly the scattering by gaseous and 
liquid argon at 150° K.; this is shown in Fig. 11. When considering a 
fluid of hard spheres, for which {J(h) can be calculated, equation 68 
becomes 

I 
J(h) = I,(h)N<l>2(hR) Bv 

l + - 0 E<l>(2hR) 
Vi 

(75) 

The corresponding curves are given in Fig. 12 for various values of 
(8v0E/vi)- Let us recall that, in practice, E can be taken as equal to I. 

·we can now establish a precise criterion for defining the term "widely 
separated particles." Equation 68 can be written in the form 

I - 2 I (h) - I,(h)N F (h) (271)312E{J(h) 
1-----

which allows us to say that the equation relative to widely separated 
particles is accurate to within n per cent when the ratio (27T)312E{J(h)/vi 
has the value of n per cent. 

A certain characteristic behavior of the scattered intensity can be 
predicted from the mathematical structure of equation 68. If the value 

1 We shall consider only spherically symmetrical particles in this paragraph in 
order to simplify the discussion. For the general case, as expressed by equation 67, 
the results are analogous. 
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Fig. 11. (a) Experimental curves of the scattering by liquid and 
gaseous argon at pressures near the condensation preBBUre at 149.3° K. 
(Eisenstein and Gingrich [40]). The dotted curve represents the 
square of the structure factor, F 2(h). (b) Theoretical curve (equation 
68) of the scattering from gaseous argon at 149.3° K. and at condensation 
pressure. (c) Theoretical curves of the scattering from liquid argon of 
several densities at 149.3° K. (u = (211/'•t:(v,)-1 [see equation 68]). 
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of {:J(h) is zero when h equals some value h1, the reduced intensity, 

l(h)/NI.(h), evaluated at h1 is a constant, F 2(h1), regardless of the con­
centration of the matter. This fact, predicted from equation 68, is 
verified quite well by the results found for argon by Eisenstein and 
Gingrich [40], when their results are considered on the basis of one 

hR 

Fig. 12. Scattering curve for non-interacting hard spheres (equation 75)_ 

temperature (see Fig. 7 of the reference cited); t.he condition of a common 
temperature for the curves is necessary, since {:J(h) depends on the 
temperature, as is shown in equation 65_ 

If the coefficient of F 2(h) in equation 68 is considered, it is seen that 
the maxima of this function always occur at the same angles (those such 
that {:J(h) is a maximum), regardless of the concentration of scattering 
matter; the only effect of a change in concentration is to accentuate 
the maxima to a greater or lesser degree. This same result is found if 
the expression derived from only the first approximation is used. (Per­
sonal communication from G. W. Brindley.) 

A detailed study of equation 68 by Fournet [48) has shown that for the 
general case, in which F 2(h) decreases in the observable region with 
increasing h, the intensity maxima are produced at larger and larger 
angles, the greater the concentration of scattering matter. This is 
illustrated in Fig. 13, in which we have plotted representative curves of 
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Fig. 13. Scattering from a fluid for three different concentrations of 
particles. The solid curves correspond to a very low concentration, 
the dashed curves to an average concentration, and the dotted 
curves to a high concentration. Note that the maxima of a(h), 
the interpa.rticle interference function, and I(h), the observed 

intensity, occur at different scattering angles. 
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the terms involved as a function of h for three values of v1 ; the solid 
curves refer to the case of v1 approaching infinity (i.e., widely separated 
particles), the dashed curves refer to a smaller value of v1, and the dotted 
cmves to still smaller values of v1 (i.e., still higher concentrations). The 
first function, the interparticle interference function 
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is equivalent to J(h) 2 ; the second is the function F 2(h); and the 
I.(h) NF (h) 

third, the product F 2(h)a(h), is proportional to the intensity. It can be 
seen that the product of the continually decreasing function F 2(h) and 
the function a(h), with its only slightly accentuated maximum, results in a 
function J(h) having a still more diffuse maximum situated at a smaller 
value of h than that for the original function, a(h), for each of these cases. 
The position of the observed maximum thus depends markedly on the 
function F 2(h), that is, on the structure of the pa.rticle. The position 
of the intensity maximum depends in a very complex way on the 
structure of the arrangement of the particles and on the particular structure 
of each particle. 

2.2.3.5. Fluids and Crystals 

In an examination of a crystalline substance by means of an experi­
mental method such as Debye-Scherrer photography, we find that the 
function for a perfect crystal which plays the role of a(h), that is, the 

function I h 1_t'~2 , is identically equal to zero except for certain 
.( ) (h) 

specific values of h, at which points it takes on very large values. The 
product of this function with the function F 2(h) then gives a function 
I(h) which shows the same structure as a(h}, in that it also is identically 
zero except for certain specific values of h. The positions of the intensity 
maxima (the Debye-Scherrer lines in this example) are identical to those 
of the function a(h) and thus can immediately furnish information on the 
structural arrangement of the particles (see Fig. 14). This illustrates 
one of the essential differences between the classical problems of X-ray 
crystallography and the problems that are treated here: the degree of 
order in a crystal is in general such that the function J(h)/F2(h) presents 
sharp maxima. As a result the maxima of the function J(h) occur at 
the same values of h as the maxima of the function J(h)/F2(h). This 
result does not apply to fluids, for they are much less ordered than any 
crystal. 

We should like now to offer a physical explanation of the fact that the 
maximum of the function J(h)/F2(h) is produced at a constant angle for a 
fluid, independent of its concentration. For this very qualitative 
explanation let us make the approximation that P(r) = e-/!}(r)fkT. The 
factor of physical importance in this problem is the arrangement of par­
ticles around any one particle. At very low concentrations the probability 
of finding a particle in a volume element dv1 is dv1/v1• If it is known that 
this element, dv1, is at a distance r from another particle, the probability 
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a(h) 

h 

h 

l(h) 

h 

Fig. 14. Scattering from perfect crystals. The maxima of a{h) and 
l(h) occur at the same scattering angles. 

becomes (dv1/v1)e-lfl(rl/kT, and the probability density, d(r), from its 
definition, is (l/v1) e-ll>(r)/kT. We have plotted this probability density 
in Fig. 15 for two concentrations, v1' and v1H. Whereas the mean 
probability density increases when the concentration increases, the 
ratio of probability densities for arbitrarily chosen r1 and r2 remains a 
constant. Since the position of the maximum of l(h)/F2(h) is related to 
this ratio of probability densities, it can thus be understood that the 
position of the maximum will remain inva.riant. 
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To summarize, we have shown that there is a great deal of difference 
between the behavior of the function directly connected to the arrange­
ment of particles, /(h)/F2(h), and the function I(h) which is observed 
experimentally. In §4.1.2.2 we shall return to this point to discuss its 
important consequences in the interpretation of experiments. 

d(r) 

r 

Fig. 15. A scheme.tic representation of the probability density d(r) 
for two different concentrations of pe.rticles. 

2.2.3.6. Secondary Maxima 

In the course of experiments on the scattering of X-rays by suspensions 
of latex, Yudowitch [186] and Danielson, Shenfil, and DuMond [25] found 
several maxima in the scattering curve (Fig. 16). A study of this same 
suspension by electron microscopy showed that the latex globules were 
spherical and very regular in size, variations in diameter being less than 
10 per cent. These globules were relatively close-packed, so that an 
explanation based on the theoretical development of §2.2.3.4 can readily 
explain the principal maximum, the maximum at the smallest angle. 
The other maxima, which we shall refer to as secondary maxima, appear 
to be more difficult to interpret. 

Yudowitch advanced the hypothesis that these secondary maxima were 
due to the particular form of the square of the particle structure factor, 
F 2(h). Let us re-examine the function F 2(h), considering the latex 
globules as analogous to hard spheres of constant electronic density, this 
being the same model that we have heretofore designated as "Debye's 
model." 
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The intensity scattered by one such sphere is given by the relation 

F 2(h) = 11>2 hR = [ sin hR - hR cos hR] 2 
( ) 3 haRa 

55 

(31) 

The positions of the maxima and minima of this function are then given 
by the solutions of the equation 

21l>(u)ll>'(u) = 21l>(u) (u2 - 3) sin u + 3u cos u = 0 
u' 

Fig. 16. A microphotometer curve of the diffraction pattern of latex 
particles showing the secondary diffraction rings. Intervals at the 
bottom correspond to a scattering angle of 3 minutes of arc (Danielson, 

Shenfil, and DuMond [25]). 

where u = hR. The solutions corresponding to the minima are those for 
which ll>(u) = 0. The positions of the maxima are given as solutions 
of the equation 

(76) 

At these positions we note that 

• 2 9 
$2 u - sm um -

( ml - u 2 - u 4 + 3u 2 + 9 
m m m 

(77) 

A first approximation to the solutions of equation 76 is found by 
placing um= kTr, where the first maximum is that fork= 0, the second 
for k = 2, the third, k = 3, etc. A better, second-order approximation 
(except fork= 0) is obtained in writing 

(78) 
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the corresponding intensities being given by 

9 81 
l(um) = k'Tr' + k67r6 

Thus we can establish the following table: 

Index of Maximum 1 2 3 
k 0 2 3 

"m• equation 78 5.80 9.10 
"m• exact 0.000 5. 76 

103 x Im, equation 79 7.37 
103 x Im, exact 1000 7.45 

1.28 

4 
4 

12.33 

0.39 

5 
5 

15.52 

0.15 

(79) 

6 
6 

18.69 

0.07 

It should be noted that the second-order approximation gives co1Tect 
values even for k = 2. 

Evidently the ratio of I(um) at its first maximum, at zero angle, to the 
value of l(um) at its second maximum is very large, actually a value of 
1.3 X 102, but, more important, the ratio of the intensities of any two 
other successive maxima is small; the ratio of the second to the third is 
only about 5. It is thus possible to observe experimentally several of the 
maxima that ·theory predicts for the case of widely Beparated particles. 

Next the effect of interparticle interference should be considered. We 
shall employ equation 75, which has been established for the case of 
particles with no mutual interaction other than impenetrability; though 
this represents an approximation, it should be sufficient for the larger 
angles. Neglecting constant factors (see §2.2.3.4), the scattered intensity 
is 

<f>2(u) 
l 2(u) = -----

8v0 
1 + - e<l>(2u) 

V1 

Expanding this function, l 2(u), around the point u = kTr + x, we find 
that to a second approximation this function is a maximum for 

u = kTr - (3/k7r} + ... 
the same result as that found for the maxima of <1>2(u}. The values of the 
intensity maxima are (cf. equation 79): 

9 81 27c 
l2(um} = k'n' + k67T6 + 4k67r6 

where c designates the ratio (8v0e/v1}, which has a maximum value of 
about 6. 

We see thus that for this model the poBitionB and magnitudeB of the 
Becondary maxima are only Blightly modified in paBsing from a very dilute 
BYBtem to a denBe ByBtem. This is not true for the principal maximum; 
the principal maximum occurs at zero angle for dilute solutions, and as the 
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concentration increases it is displaced towards larger angles, occurring at 
values of u between 0 and 2.5 for systems of average concentration. 

The explanation of the secondary maxima observed by Yudowitch is 
thus given by a complete calculation of interparticle interferences. These 
maxima are present in the representative curves of F 2(h) for a single 
particle, and interparticle interferences, instead of removing these maxima, 
actually reinforce them slightly, as is shown in Fig. 17. 

l(h) 

10·10-3 

5 hR 

Fig. 17. Scattering from hard spheres. The solid curve represents 
the intensity scattered by a single sphere of radius R at large value of 
hR (see Fig. 6). The dotted curve represents the scattered intensity 

per sphere for a dense group of spheres ((8t10E)/v1 = 15). 

We must point out that this explanation of the secondary maxima is 
based on the choice of a model of the particles, but the hard-sphere model 
seems particularly valid for suspensions of latex globules. 

Let us now consider as a second example the secondary maxima that 
can be observed in the scattering curves of liquid or gaseous argon as 
determined by Eisenstein and Gingrich (Fig. 11). A comparison of 
these curves with the square of the structure factor shows immediately 
that these secondary maxima are due uniquely to interparticle inter­
ferences. 

2.2.3.7. Remarks on Fourier Transformations 

When considering two mutually reciprocal spaces that are connected 
by a Fourier transformation, as, for example, the real space containing the 
particles and the reciprocal space of the variable h, in which densities a.re 
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related to scattered intensities, it is known that an unevenness in density 
in one space corresponds to a periodic variation of density in the other 
space, with the period in the second space being related to the position 
of the unevenness in the first. We know thus that a Debye-Scherrer line, 
which is a discontinuity in h space, is determined by the periodic dis­
tribution of certain crystallographic planes in real space, and the position 

Real space Reciprocal space 

p(r) 

Hard 
sphere 

Poi------~ 

p(r) 

Argon 
atom 

R r h 

r 

Fig. 18. Schematic curves of p(r) and F•(h) for a hard sphere and 
for an argon atom. The unevenness in p(r) for the hard sphere causes 

a certain periodicity in its F"{h). 

of the line is determined by the period, or distance between consecutive 
planes, in real space (Bragg's law). These remarks can now be applied in 
a discussion of the intensity scattered by a hard homogeneous sphere and 
by an atom of argon. Both particles are characterized in the real space 
by the electronic density p(r) at a distance r from the center of a particle 
and in the h space by the function F(h), related to p(r) by a Fourier 
integral (see §2.1). 

Since the density p(r) is more uneven, in a general sense, for hard 
spheres than for argon atoms, the graph of F 2(h) for hard spheres will 
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demonstrate a certain periodicity not found in the corresponding curve 
for argon, as is seen in Fig. 18. 

Let us now consider an ensemble of hard spheres and an ensemble of 
argon atoms. The effects of interparticle interferences, which must be 
taken into account, will be determined in real space in terms of the 
potential <l>(r) associated with the forces acting between two particles 

if?(r) 

Hard 
sphere 

if?(r) 

Argon 
atom 

r 

fj(h) 

h 

fj(h) 

r 

Fig. 19. Schematic curves of tll(r) and {J(h) for hard spheres and for 
argon atoms. The argon interaction potential is the more uneven, so 

its function {J(h) has the more marked periodic character. 

separated by a distance r. We have previously shown that the influence 
of <l>(r) is felt through the intermediary of a function {J(h), which is defined 
as the Fourier transform of or;(r), where or;(r) = e-IJJ(rl/kT - 1. Thus we 
can say immediately that, since the curve of ¢l(r) with respect to argon is 
the most uneven, the function fj(h) of argon will have the more marked 
periodic character. This is shown in Fig. 19. 

The scattered intensity is found by combining the functions F 2(h) and 
p(h) (see §2.2.3.2). The above discussion shows why the secondary 
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maxima from argon are due almost entirely to interparticle effects, 
whereas form and internal structure are the predominant factors for the 
case of hard spheres. 

2.2.4. PARTICLES UNRESTRICTED BY HYPOTHESES H1 AND H1 

We have assumed from the beginning of §2.2 that the scattering 
matter being examined satisfies hypotheses H1 and Hz. We should like 
now to remove these restrictions. If the details of the calculations which 
led to equation 47 are considered, it is seen that the second part of our 
hypothesis-that which excludes all possible relations between relative 
positions and probabilities of orientations of particles (i.e., all possible 
relations between positions and structure factors)-has enabled us to 
calculate the averages by describing the average of the factor 

as the product of the averages of F1:(h), F 1(h), and cos (h • (R1: - R1)). 

The first part of hypothesis H1 gave knowledge of the average of F(h), 
which was convenient for our considerations. 

We should like now to try to consider the general problem in order to 
determine the characteristic magnitudes that are involved in this 
question. 

The general relation, equation 46, shows that only information relative 
to pairs of partides is necessary. Thus it is sufficient to define the 
statistical correlations existing between two particles. We shall describe 
these by means of the development offered by Fournet [ 48]: 

p1(F, h) designates the a priori probability density function of the 
scattering factor F of a particle for a scattering angle corresponding to h. 
We shall assume this function to be identical for all particles. If we have 
no information concerning the surroundings of a particle, the probability 
that its scattering factor for a given value of h is contained between the 
values F0 and F 0 + dF0 is equal to p 1(F0 , h) dF0• 

p2(F1, Fk, r, h) designates the probability density function of the 
scattering factor F; of a jth particle for a scattering angle corresponding 
to h when it is known that the scattering factor for the same angle of a 
kth particle has a value F1c, where Rk - R1 = r. As a consequence of the 
indistinguishability of particles, p 2 must be the same for the same vector 
r, regardless of the position of the center of the kth particle. 

There is no contradiction in stating that the probability density p 1 is 
the same for all particles, while defining p 2 as has been done above, if it 
is realized that the function p 2 concerns ensembles of factors Fk and F1, 
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whereas p 1 governs the factor Fk or F1, considered by itself. The relation 
between p 1 and p 2 can be expressed as 

£00
P2(F;, Fk, r, h)p1(Fk, h) dFk - p 1(F;, h) (80) 

Now let us consider the intensity of radiation scattered by an ensemble 
of identical, arbitrarily shaped particles, 

/(h) = l,(h)2:2:Fk(h)F,(h) cos (h · (Rk - R;)), 
k j 

(81) 

We can group separately the terms for which. k = j. An analogous 
problem has been treated in §2.2.1.2, in which tlie result for the sum of 
these terms was shown to be 

I,(h)N F 2(h) = I,(h)N L00F 2p1(F, h) dF 

In the general term of equation 81 for which k =I= j there are found 
three types of variables: 

1. The scattering factor Fk (F; is related to Fk by means of the functions 

P2l· 
2. The angle Z)_h(Rk - R1). 

3. The distance I Rk - R1 I· 
In order to evaluate the group of terms for which k =I= j we shall perform 

successive integrations over each of these variables. 

Average of the Variable F k 

Let us consider first only the functions F1; as variables. The group of 
terms of equation 61 for which k =I= j can now be written as 

2: 2: {cos (h · (Rk - R;)) f '° Fkp1(Fk, h) f"' F 1p 2(F;, Fk, r, h) dF1 dFk} 
k Nk Jo · Jo 

(82) 

We shall assume that correlation between values of the scattering factors 
does not occur for large distances of separation; the knowledge of Fk gives 
no information about F1 if I Rk - R1 I is large compared to nearest 
neighbor distances. 

It now follows that p 2(F1, Fk, r, h) tends toward the function p 1(F1, h) 
for large r. Thus it is useful to express the quantity p 2 as 

p 2(F;, Fk, r, h) = p1(F1, h) - {p1(F1, h) - p 2(F;, Fk, r, h)} (83) 

On replacing p 2 by this expression, equation 82 breaks down into two 
terms: 
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First term: This term describes the scattering when the structure 
factors Fk and F; follow the same law of probability, independent of one 
another. We have already solved an analogous problem (§2.2.1.2), 
which gave as a result 

F(h) 2{L L cos (h. (Rk - R;))} 
kN•k 

where F(h) = i 00 
Fp1(F, h) dF 

Second term: This term is of the form 

where 

- L L {b(r, h) cos (h • (Rk - R;))} 
kh'lc 

b(r, h) = f" {'" Fkp1(Fk, h) {p1(F;, h)- p 2(F;, Fk, r, h)}F1 dF;dFk (84) 

The bracketed term in the integrand approaches zero when Ir I becomes 
large, and consequently the function b(r, h) behaves in the same manner. 
Thus in evaluating this second term we can neglect boundary effects and 
treat the summation over the index j as independent of k: 

- L L b(r, h) cos (h • r) 
kr;•O 

where the sum extends over all vectors r which exist in the sample (except 
r = 0). The sum over k then results simply in multiplying this result by 
the average number of particles. The final expression for the scattered 
intensity is then 

or 

J(h) = J,(h)N{F2(h) - L b(r, h) cos (h • r)} 
r;<O 

+ J.(h)F(h)2 {L L cos (h. (Rk - R;))} (85) 
k j;<k 

J(h} = J,(h)N{[F2(h) - F(h)2] - L b(r, h) cos (h • r)} 
r;<O 

+ J.(h)F(h)2 LL cos (h. (Rk - R;)) 
k j 

Average with Respect to the Angle .zS_ h (Rk - R1) 

(86) 

Keeping the magnitudes of the distances fixed, let us assume that all 
orientations of the vector r are equally probable. The function p 2 then 
depends only on the distance r between centers k and j. The terms in 
cos (h · r} on averaging will then be replaced by terms in sin hr/hr (a 
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calculation illustrated several times, viz., equation 7). The resulting 
expression for the intensity is 

/(h) = I.(h)N{[F2(h) - F(h)2] - ,L b(r, h) sin hr} 
r7"0 hr 

(87) 

Average with Respect to Distance r 

For this final averaging we proceed as in §2.2.1.3, defining a function 
P(r) which is related to the probability of finding the centers of two 
different particles at a distance r. When no external field is applied, ·an 
orientations of a vectorial distance r are equally probable, so that we can 

begin with equation 87, modified only so that the term -NI.(h)F(h)2 is 
included in the double sum over k and j. Analogous problems have 
already been treated in §2.2.1.4. 

The summations of equation 87 must be replaced by integrations, taking 
into account the probability of realization of the different distances, r. 

By replacing P(r) with 1 - (1 - P(r)] and considering only angles for 
which h > h0 ( §2.2.1.4), only the term in (1 - P(r)] need be considered 
in the third term of equation 87. This reasoning cannot be applied to the 
second term of equation 87, since b(r, h) tends to zero as r becomes large. 
The final expression is thus (Fournet (48]) 

- - {-- F(h)2 i"" sin hr /(h) = I.(h)N F 2(h)- -- [ 1-P(r)]-h- 4?Tr2dr 
V1 0 r 

l i"" sinhr } - - P(r)b(r, h) -- 4?Tr2 dr 
V1 0 hr 

(88) 

The first two terms of this expression are identical to those derived on 
the assumption of complete independence between the orientations and 
the positions of the particles. The term in b(r, h) thus appears as a 
corrective term, necessary for the description of the general case. 

The complete expression, equation 88, must be used, for example, in 
calculating the intensity scattered by a dense ensemble of identical 
ellipsoids of axes 2R, 2R, and 2vR. The scattering factor of an ellipsoid 
for a given scattering angle, 20, depends on the orientation of the ellipsoid. 
If it is known that the distance between the centers of two ellipsoids is 
2R, the axes of these ellipsoids cannot be oriented in a completely arbi­
trary manner, and, consequently, their scattering factors must be related. 
We can see by this example how a relation between scattering factors 
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Fk and F; and the distance between their centers can be introduced. It 
is this dependence which introduces the supplementary term in equation 88. 

We have just seen that in the general case, in which the orientations 
and the positions of particles are related, the expression for the scattered 
intensity contains two characteristic functions, P(r) and b(r, h). This 
makes it impossible to determine separately these characteristic functions 

from the experimental curve of J(h). Equation 88 can serve only to predict 
intensities for certain models. 

T.o proceed further it would probably be necessary to introduce thermo­
dynamic considerations, defining a potential energy of interparticle forces 
not as a function <l>(r) but rather as <l>(r, qi), where at least one angular 
variable is necessary, and then relating the functions P(r) and b(r, h) to 
this potential. This problem has not yet been undertaken. 

Remarks 
In establishing equation 86 we have allowed only the structure factors to undergo 

variations, so that a simple interpretation can be given to this equation by applying 
it to a study of crystals and neglecting therme.1 effects. 

The third term of equation 86 represents the intensity sc11.ttered by the s11.mple 
under inspection, if it is supposed th11.t e.11 the scattering centers are identical, with 
scattering factors F(h). The first term varies only slowly with h, while the second 
term can present intensity maxima that will probably be less sharp than those 
created by the third term. From this we can see the essentie.1 role of the function 
b(r, h), a function that is analogous to the Patterson distribution function for crystal 
structure analyses. If we assume that each of the three intensity terms can be 
separated, all the information obt.ainable from experiments will be contained in the 
function b(r, h). 

In the study of crystals it is often assumed that the structure factors of different 
atoms all follow the same law, F(h). the magnitudes depending on a coefficient eque.l 
to the atomic number Z of the atom considered. If we assume this to be true, e.11 
the formulas we have developed can be considerably simplified, for the functions 
p 1. and p 1 can be treated as being functions uniquely of the Zk. 

The function b(r, h) becomes 

b(r, h) = b(r, h) = F 1(h)I:I:Z.tP1(Z.) [p1(Z1) - p,(Z1, z •. r)]Z, 
kj 

= F 1 (h)c(r) 

The final result is then (Fournet [48]) 

J(h) = I,(h)N F 1(h){[Z' - Z1J - I:c(r) cos (h • r)} 
¥;"0 

+ J,(h)F1 (h)Z1I:I: cos (h • (R. - R1)) 
k j 

(89) 

The function c(r) can e.lways be calculated from any given model. We have 
employed this technique in the recalculation of the scattering by a linear model of 
an e.lloy with partie.l short-range order, a model first studied by Guinier and Griffoul 
(1948). We quickly obtained the same results as those given by these authors. 

Equation 86 can be easily used to obtain the intensities scattered by more compli· 
cated models. This equation, a particular case of which has been given by 
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Mac Gillavry and Strijk (1946), can be viewed as a generalization of the expression 
obtained by von Laue (1941) in considering completely disordered metallic solid 
solutions, in which all scattering centers were assumed to follow independently the 
same law. When bound by this assumption, p 2 is equal to p 1 and the function 
b(r, h) becomes identically zero. The second term of equation 86 disappears and, 
on noting that the two types t>f atoms, A and B, are present in proportions p,,_ and 
PB the Laue equation is obtained: 

F 2 - F 2 = P.AFA'l. + PBFB2 - (pAF A + PBFBF" 

= PA-PB(F A - FB) 2 

2.3. SCATTERING BY GROUPS COMPOSED OF SEVERAL TYPES OF 
PARTICLES 

This problem is quite complicated, and the few equations that can be 
derived have not yet been employed in experimental studies. 

2.3.1. GENERAL THEORY 

Simple calculations, in every way analogous to those which have been 
developed in §2.2.1.4, give the following relation for the scattered intensity 
(Fournet [ 48]): 

I(h) = I.(h)N { fpkFk 2(h) 

- -- 1 i 00 sin hr } + L LPkP;Fk(h)F;(h) - [Pk1(r) - l] -- 4rrr2 dr 
kj V10 hr 

(90) 

where Fk(h) designates the structure factor of the particle of type k; pk, 

the probability that one of the N particles is of the type k; v1, the average 
volume offered to each particle, regardless of its type; and Pk;(r), a 
probability function analogous to the function P(r) defined in §2.2.1.3, 
which applies to a pair of particles of type k and j. Evidently 

Pk1(r) = P1k(r) 

This general expression can best be appreciated by comparing it with 
equation 53, the expression applicable to an ensemble of identical particles. 
From the first terms we obtain 

F2(h) = LPkFk 2(h) 
k 

while from the second terms 

and 
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By a simple substitution we now find 

LLPkP;Fk(h)F;(h)Pk;(r) 
P(r) = _k~3-· -------­

LLPkP;Fk(h )F;(h) 
k j 

which demonstrates that in the general case a function equivalent to 
P(r) but dependent on the single variable r does not exist. 

It is equally impossible to obtain information by means of a Fourier 
transformation. Equation 90 can be written in the form 

The right side of the equation depends on the variable h not only in the 

term sin hr/hr but also in Fk(h) and F;(h), and this prevents the effective 
application of a Fourier transf~rmation. Results can be obtained by this 
technique only if the assumption is made that Fk(h) = ad(h), that is, 
that the functions F;(h) differ only by a constant factor. On making 
this assumption, we find 

L LPkP;akaiPk;(r) 
with P(r) = _k_i ____ _ 

LLPkP;aka; 
(92) 

k j 

from which the function P(r) can easily be obtained by means of a Fourier 
transformation. 

With the exception of this case, which itself would be hard to interpret, 
it is difficult to use equation 90 without supplying some model. 

2.3.2. WIDELY SEPARATED PARTICLES 

'-'Then the concentration of scattering matter becomes small equation 90 
reduces to the following form: 

l(h) = I.(h)N LPkFk2(h) 
k 

(93) 

which describes the total intensity as being given simply by the addition 
of the intensities scattered by each of the different types of particles, each 
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weighted by its respective probability. On expressing each Fk 2(h) by the 
approximate law of Guinier (equation 39), equation 93 becomes 

(94) 

This relation shows that the total curve can still be represented by an 
exponential function if the Guinier approximation is valid for all of the 
individual particles, particularly those that are the largest. 

These conditions are rarely satisfied in practice. Thus, it is more 
interesting to consider the tails of the scattering curves. The principal 

part of the curve of Fk2(h) at large values of h for a homogeneous particle 
of density Pk and external surface Skis given by the function (2TTpk 2Sk)/h4 

(equation 26). The extra terms acting as damped oscillations contain 
the functions cos hRlk and sin hR1k, where Rlk is the maximum dimension 
of the kth particle. When the curves for a large number of particles of 
different dimensions are added together, it is probable that the sum of the 
oscillating terms will be zero. In fact, such oscillations have never been 
observed on a scattering curve unless the particles of the sample were 
extremely uniform in size (Fig. 16). The asymptotic behavior of the 
observed curve is then 

(95) 

This shows that, for a given angle within the domain of validity of 
equation 26, the scattered intensity is proportional to the total surface of 
the group of diffracting particles if all particles have the same electronic 
density. 

In this discussion we have assumed that the particles were separated 
sufficiently so that there were no interparticle interferences. In §2.4.3 we 
shall see that equation 95 is also valid for the case of packed powders. 

2.3.3. INFLUENCE OF THE CLOSER PACKING OF PARTICLES 

Evidently one can try to effect the same sort of generalization of 
equation 90 as was done with equation 53, the equation of the scattering 
relative to a single species of particle. The first step is to generalize the 
theory of Born and Green (Fournet [51], and Rushbrooke and Scoins 



68 SMALL-ANGLE SCATTERING OF X-RAYS 

(1951)) so as to allow the consideration of this case. The general 
expression can be obtained in placing 

- cJ>k1(rl +hi«> 
Pk;(r) = e kT 

Next the functions g(h) and /J(h) are defined as 

1 Joo hgk;(h) = ---= rfk1(r) sin hr dr 
v'27T - 00 

1 f 00 h/Jk;(h) =-= r(e-cJ>k1(r)/kT -1) sinhrdr 
v'27T - 00 

These two functions are connected by the set of relations 

where the E;k designates a mean value of (f;k(r) + 1) near the origin, 
r=O. 

With the introduction of these functions, equation 90 becomes 

-{ - (277)3/2 -- } 
I(h) = I,(h)N 2._pkFk2(h) + -- 2..2..PJcP;Fk(h)F;(h)[gk1(h) + €kA1(h)] 

k Vl k j 

(96) 

The scattered intensity then depends only on the functions Fk(h) and 
/Jk;(h), since the gki(h) are expressible in terms of the /J 1m(h). We have 
given the complete expression for the intensity scattered by ensembles of 
two types of spherically symmetric particles in another article (Fournet 
[48]). This complicated equation was applied to mixtures of homogeneous 
spheres of the same matter but of radii R and 2R; the curves representing 
the variation of scattered intensity as a function of angle are given in 
Fig. 20. Two parameters were included in the calculation: k, the ratio 
of the volume occupied by the particles to the total volume offered them; 
and x, the ratio of the mass of smaller particles to the total mass of the 
particles. Short-dashed curves correspond to k = 0.5, long-dashed 
curves to k = 0.125, and full-line curves to the case of infinitely separated 
particles. 

For each concentration, x per cent, the curves have been normalized 
so that the ordinate at h = 0 is equal to unity. The essential feature of 
the curves is that for constant k, the intensity curves are more sharply 
varying, the more homogeneous the mixture. 

We believe that this statement is generally true; it is difficult to 
conceive of a not too compact heterogeneous mixture manifesting a 
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Fig. 20. Scattered intensity from mixtures of spheres of radii R and 
2R. The parameter x denotes the ratio of the mass of the small spheres 
to the total mass of the mixture, and k represents the ratio of the 
effective volume of the spheres to the volume occupied by the 
mixture. ---, k = O; ---, k = 0.125; -----, k = 0.500. 
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reasonable degree of order. In our model, the curve fork= 0.5 possesses 
a maximum only if the mass of smaller particles represents more than 95 
per cent or less than 25 per cent of the total mass. 

We must remark that this model was based on spherical particles, and 
that consequently there was a favorable opportunity for observing intensity 
maxima. In generalizing the conclusion drawn from a study of this 
example, it thus would be a temptation to state: in a mixture of non­
identical particles of arbitrary forms and with random distribution (no 
long-range order) it is improbable that the packing of particles will lead to 
large changes in the scattering curves and that thus the laws for widely 
separated particles can furnish the orders of magnitude of the scattering 
phenomena. 

This idea is in agreement with the calculations of Hosemann [81], 
[84], who showed that, for arbitrary particles and conveniently chosen 
functions PM(r), the packing of the particles caused little change in the 
distribution of scattered intensity. We refer the reader to these works 
for the details of the calculations and results. 

Conclusions contrary to these have been given by Kratky and Porod 
[108], [137], in considering the influence of packing on an ensemble of 
heterogeneous particles. However, they considered uniquely a linear 
model composed of a series of parallel plates of different thicknesses 
situated at variable distances from one another. In the limiting case the 
space is completely occupied by the plates, causing the central scattering 
at observable angles to disappear entirely. The packing of particles thus 
creates notable changes in the distribution of scattered intensity. We 
believe that this is a rnsult which depends on the linear character of 
the model. 

2.4. GENERAL CASE 

There are often substances which give rise to strong small-angle scatter. 
ing that cannot be described as a group of well-defined particles arranged 
in a more or less close-packed fashion. This is true, for example, of 
matter which displays submicroscopic porosity, such as activated carbon. 
The physical characteristic that can accurately define these substances is 
the electronic density p(x) found at the point defined by the vector x. 
The intensity scattered by such a substance is then given by the general 
relation 

(97) 

V being the volume irradiated by the X-rays. It is well known that it is 
not possible to determine p(x) from the experimental data. Indeed, 
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low-angle scattering experiments made with different samples taken from 
a given material give the same experimental curve. Thus it is obvious 
that the central scattering depends on some statistical property of p(x) 
that defines the state of heterogeneity or porosity of the substance. It is 
particularly interesting to try to determine the general characteristics 
that are necessary for the production of an observable scattering at small 
angles. When considered in this general form, the problem presents 
special difficulties; we shall first discuss these difficulties and then present 
the results of the attempts that have been made in this field. 

2.4.1. LIMITING VALUE OF THE SCATTERED INTENSITY AT VERY 
SMALL ANGLES 

The property we shall try to calculate is the "experimental" limit of 
the scattered intensity as the scattering angle tends to zero, that is, the 

l(O) 
l(h) l(h) l(h) 

M N 
I(h-0) ------------•:---

ho h ho 

Fig. 21. (a) Schematic representation of a real scattered intensity 
distribution. (b) The observable intensity and its extrapolated value 
at h = 0. (cl A possible result for a calculated intensity distribution. 

intensity that can be obtained by extrapolation of the results of measure­
ments which, as will be seen later, cannot be extended to angles smaller 
than several minutes of arc, even with the most perfect experimental 
system. 

Let us recall some results of our discussion of an ensemble of particles. 
The curve of the scattered intensity shows a very important singularity 
in the neighborhood of h = 0, since for extremely small values of h the 
amplitudes of the waves scattered by all the electrons in the scatterer add 
together and the scattered intensity approaches the value, 

/(0) = I,(O)n2N 2 (98) 

The width of this central peak, defined by the parameter h0 (see Fig. 
2la), depends on the dimensions of the volume V explored by X-rays and 
is smaller by several orders of magnitude than the minimum observable 
angle. 
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A correct calculation of the desired "limiting intensity" should give a 
formula which reproduces the real curves down to a value of h equal to h2 , 

the experimental limit, and then, eliminating the central peak, remains 
practically independent of h (Fig. 2lb) in the range between h2 and 0. This, 
for example, is the result obtained in the calculations of §2.2.3.3, which 
pertained to the particular case of an ensemble of particles contained in a 
volume V 0 large with respect to the volume V of the scatterer explored 
by the X-rays. The result of this calculation gave 

(72) 

Frequently it can happen that, in trying to eliminate the central peak, 
a term will be discarded in the course of the calculation which will bring 
about a marked change in the curve, such as that depicted in Fig. 2lc. 
Such a formula does not give correctly the limiting value of the intensity 
when h is made equal to zero. It can be quite correct for h > h0 , but it 
will not be useful, since the intensity cannot be easily calculated if h is 
non-zero. 

In the case of an ensemble of particles, the intensity 1(0) for h = 0 is 

of the order of N 2, while the limiting value should be of the order of 

N 2 - N2, that is, of the order of N. (This limit is exact for the case of 
ideally separated particles, viz., equation 55.) Thus we see that in the 
region of very small angles the limiting intensity, which will be expressed 
as the difference between the exact expression for the intensity and another 
term which must be made more definite, is of the order of l/N times the 
actual intensity. This order of magnitude indicates immediately tlie 
rigor and exactness that must be maintained in all phases of tlie calculations. 

As an illustration of the effects of a slight inexactness, let us reconsider 
the reasoning that we have developed in §2.2.1.3 and §2.2.1.4. We have 
assumed that the volume V 0 is large with respect to the volume V. If 
we vary V 0 (and thus N 0 , the total number of particles), keeping V and 
v1 constant, equation 72 predicts a limiting intensity of zero when V 0 = V; 
this is then a good example of the type of curve represented in Fig. 2lc. 

In order to obtain a relation which will more accurately describe this 
case, the manner in which the function P(r) was introduced must be 
reviewed, noting specifically that the probability PkJ dvk dv; is defined 
by the relation 

N 0 N 0 - 1 
Pk; dvk dv; = - dvk P(rk;) dv; 

V0 V0 - dvk 

The infinitesimal volume element, dvk, is always negligible as compared 
with V 0, but this cannot always be said for the comparison of unity with 
respect to N 0, particularly when V and V 0 are approximately equal (and, 



GENERAL THEORY 73 

thus, N and N 0). On reconsidering the complete calculation, beginning 
with the relation 

we obtain as an expression for the observable intensity (cf. equation 53) 

l(h) = l 0 (h)N {F2(h)- F(h)2 !_ No - 1 f'°[l - P(r)]sinhhr 471'1'2dr} (99) v1 N 0 Jo r 

In the limit as h - 0, we then find 

(100) 

which gives as an expression for the limiting value of the observable 
intensity (Fournet [48]) 

-2 

l(h - 0) = I.(O)n2 [ (N2 - F) + ~ J 
= I.(O)n2 [ N2 - N2 + N ;J (101) 

- -2 -
The factor (N2 - N) is of the order of N, so that, when V/V0 is small 
with respect to unity, equation 101 is to a first approximation equivalent 
to our earlier result, equation 72. The advantage of equation 101 is that 
a reasonable result is permitted in the case for which V = V 0, 

lv=v0(h---+ 0) = I.(O)n2N 

We can see by this example how approximations which at first sight 
are quite logical can completely upset the results of this type of calculation, 

We have defined the limiting intensity by an extrapolation of a part of 
the curve of Fig. 2lb, but we have not yet determined whether this 
quantity has any physical meaning. We know, for example, that the 
actual curve has a shape which depends on the form of the sample, 
whereas the limiting intensity should depend only on the statistical 
properties of the distribution of scattering centers in the sample. It is 
not obvious that the operation of extrapolation as described should lead 
to such a result. In any event, we have not yet clearly defined a criterion 
for the determination of the extrapolated part of the curve (part MN of 
Fig. 2lb). Questions such as these form the obstacles encountered when 
an attempt is made to resolve the problem of low-angle scattering as 
calculated from the electronic density function. 

As a first approach, let us offer without real proof a qualitative 
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treatment; then we shall present the solution given by Debye and Bueche 
[322] and that of Porod [137] for a more particular case. 

We want to calculate the scattered intensity for a value h2 near the 
minimum observable angle (for example, 2(} = l'). Let us divide the 
irradiated volume V into a series of 1W equal volumes, v1, v2, • • • Vw 

where each volume is of the order of (~:) 3 . (In the example chosen, 

V; 1:::; 1µ 3 for Cu K-x radiation; this is still small with respect to the 
volume V which is of the order of 1 mm3 . in ordinary experiments.) 
The amplitude of the radiation scattered by the volume element V; is then 
A;(h). We shall assume that there will be negligible interference effects 
among the waves scattered by the different volume elements when 
h > h2 ; this hypothesis is reasonable, for the phase difference between 
waves will always be much larger than 277, since the centers of the volumes 
are separated by distances greater than 277/h2 • Consequently a very 
probable value for the total intensity is simply the sum of the elementary 
intensities, I= 21 A; 12. In other words, the observed intensity is 

i 
effectively M times the average intensity scattered by an elemental 
volume. This result is analogous to that for the problem of a variable 
number of particles, N, in a volume V ( §2.2.3.3), except that the observed 
intensity is determined by an average over space instead of an average 
over time as N fluctuates in a constant volume V. 

Thus by analogy we are led to the following description of the limiting 
observed scattered intensity. It is proportional to the mean square 
fluctuation in the number of electrons in the volume v;, and will be zero 
if the number of electrons in the different volumes v, is fixed. If Pi is 
the electronic density of the volume V; and p is the average density as 
determined by all the volume elements, the observed scattered intensity 
will be proportional to 

y2 ___ _ 
M M2 (p; - p)2 = Vv;(p, - p)2 (102) 

The volumes v, = V/1lt do not really intervene as such, since the mean 
square fluctuation is inversely proportional to the volume v;, but their 
consideration is essential in determining the magnitude of the volume to 
be used in the calculation of P;· 

Equation 102 shows that the Umiting low-angle scattering is a consequence 
of the heterogeneities in the scattering medium, but it also allows for the 
stipulation that this heterogeneity must exist on a scale of several tens 
to several thousand angstroms if the scatte:iing is to be observable. Let 
us give several examples of the application of this simple rule. The fact 
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that matter is formed of atoms instead of being continuous is not a cause 
of low-angle scattering since the corresponding density fluctuations are 
averaged out in a volume of the order of 1µ 3 • A lattice with periodic 
perturbations of density (for example, a period of the order of 50 A) is 
heterogeneous, but it produces no small-angle scattering since the volume 
V; contains a large number of periods, and hence the average density in 
this volume is approximately constant. 

A typical case is offered by the Al-Ag alloy that will be studied further 
in §6.4.3.1. The silver atoms assemble themselves into spherical clusters 
while remaining on the sites of the solid solution lattice. Around these 
clusters is left a spherical shell lacking in silver. The shell diameter 
is of the order of 50 A, and a large number of these clusters are randomly 
distributed throughout the solid solution. 

This alloy gives a pattern of central scattering containing a diffuse ring 
whose radius corresponds to a Bragg distance of the order of 25 A, but 
the 8cattered inten8ity decrea<Jes toward the center, and careful measurements 
show that it approaches zero. If the small silver clusters exist in the 
average solid solution without being accompanied by the shell-like 
regions lacking in silver, only a normal central scattering is observed. 
Equation 102 furnishes the explanation of these facts. In the first case 
the cluster contains a number of excess atoms which is just the number of 
atoms lacking in the shell-like region. The volumes V; in which the 
densities p; should be examined are large with respect to the cluster 
dimensions; thus they contain the same number of silver atoms as they 
would if the solution were homogeneous. On this scale there are no 
electronic density fluctuations and the intensity scattered at the center 
should be zero. If there is no spherical shell around these clusters, these 
clusters will play the role of particles with an electronic density different 
from that of the surrounding medium; if the clusters are distributed at 
random in the solid solution and are not too closely packed, they give 
rise to a central scattering which is characteristic of their size. 

2.4.2. CALCULATION OF THE SCATTERED INTENSITY AS A FUNCTION 
OF p(x) 

We shall now briefly present the solution of Debye and Bueche [322]. 
These authors define a function ri(x) by means of the relation 

p(X) = Po + 'YJ(X) 

where Po designates the average density of the substance. We can then 
write 

J ri(x) dx = O 
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By means of equation 97 we can immediately write the expression for the 
scattered intensity as (cf. §2.1.1) 

l(h) = l,(h) fv Iv [Po+ '17(J:k)] [po+ 11(:1:,)]e-•'h•Czt-:11> dxk dJ:i 

Recognizing the difficulties discussed previously, we shall take account 
of more details in our calculation than was done by the original authors. 
We will divide the intensity expression into the four terms corresponding 
respectively to terms in p02, p017(:1:k), p017(:1:1), and '17(J:k)17(:1:1) and consider 
ea.ch term separately. 

First term: 

11(h) = l,(h)p@'1· fv fv e-•h·Czt-:11> dJ:k dx, 

We have already studied analogous terms (p. 34) and have seen that 
they correspond to intensities that are practically zero for all observable 
angles, since Vis the order of 1 mm3 • 

Second and third terms: Since the second and third terms are complex 
conjugates, we can write 

12(h) + 13(h) = 2Re {l.(h)p0 fv 11(:1:11:) d:1:11: Iv e-ih·Czt-z1l dx1} 

or 

12(h) + 13(h) = 21,(h) Re {fv 11(:1:k)e-ih•zt dJ:k f v p0eih· "'1 dz1} 

Therefore 

12(h) + l 3 (h) < 21.(h) I A1*(h) I ·IL ri(x}e-ih·z dz I 
The first factor I A1*(h) I is the modulus of the amplitude from which 

11(h) is derived. As we shall see below, the second factor is just the 
modulus of A4(h), the amplitude corresponding to the fourth term. 
Therefore 12 and13 as well as 11 are negligible as compared with 14 • 

Fourth term: 

l 4(h} = l,(h) fvfv 11(zk}17(:1:1)e-ih·C:1t-•1> dxk dx1 

Let us place :1:1 = J:k + r. The above equation then transforms to 

I 4(h} = I.(h) fvfv '17(J:k)ri(zk + r)eib·r dJ:k dr 

Let us consider first the integral with respect to :1:11:, 

Iv 11(:1:)17(:1: + r} dx 
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This integral depends Ul).iquely on r. For r = 0, the value of the 
integral is proportional to ;ji, the mean value of the square of the density 
fluctuations, since 

Iv 17(x)17(x) dx = f v 172(x) dx = 172 V 

Conforming to the notation of Debye and Bueche, let us define a 
function y(r) by the relation 

fv 17(x)17(x + r) dx = ;j°iVy(r) (103) 

The equation for I 4(h) then takes the form 

I 4(h) = I.(h)17 2 V fv y(r)eih·r dr 

This integral can undergo two modifications: 
1. For large r there is no relation between the fluctuations of 17(x) and 

17(x + r); the function y(r) thus tends to zero as r increases. The 
integration over the domain V can then be replaced by an integration over 
an infinite region. 

2. It can often be assumed that, in the region of vectors r of small 
magnitude, the only domain in which y(r) is different from zero, the 
properties of y(r) depend only on the magnitude r. 

The final expression for the intensity is then 

- ("' sinhr 
I(h) = I 4(h) = l 6 (h)172V Jo y(r)--,;- 4'1T1'2 dr (104) 

This is the expression developed by Debye and Bueche to describe the 
intensity scattered by the matter under examination. 

Let us consider the limiting value of I(h) ash - 0: 

1(0) = J.(O) fvfv 17(xk)1J(X1) dxt dx1 

= I.(O) Iv 17(xk) dxk L 17(x1) ~xi (104:a) 

The integral J17(x) dx is zero in a large volume on the average, but the 
irregularity of the distribution of matter in the volume V irradiated by 
X-rays gives it a value which fluctuates around zero. The two integrals 
of equation 104:a are taken over the same volume; the two factors are 
thus not independent, and the average of the product is not the product 
of the average of each factor. Therefore, although the average value of 
each integral is zero, the average value of J(O) is not zero. A calculation 
shows that the limiting value for the intensity scattered at zero-angle is 
given by equation 102. 
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2.4.3. MATIER OF UNIFORM DENSITY AND RANDOM 
DISTRIBUTION 

Porod [137] studied a more particular system, that of a sample made 
up of a random distribution of matter of constant density. The density 
p(x) in the volume V of the sample can take only two values, p and 0. If 
c is the fraction of the volume occupied by matter, the average density of 
the sample is pc. In the parts occupied by matter r; = p(l - c), and in 
the empty regions r; = - pc. Therefore 

r;2 = p2c(l - c) (105) 

Porod defines the distribution of matter by a function, Z(r), which 
represents the probability that a point in the volume at a distance r from 
a point occupied by matter is itself also occupied. It is assumed that this 
probability is a function only of the distance r (an isotropic sample) and 
that there is no long-range order, so that Z(r) tends toward c as r approaches 
infinity. We can therefore put 

Z(r) = c + (l - c)y(r) (106) 

where the function y(r), called the characteristic function of the sample, 
has the value unity when r is zero and approaches zero as r becomes very 
large. This is identical to the function Debye and Bueche introduced 
by the definition 

f r;(x)r;(x + r) dx = ;Ji Vy(r) (103) 

In order to show this, let us first point out that Z'(r) = (1 - c) + cy(r) 
represents the probability that a point in the volume at a distance r from 
a point in empty space (unoccupied) is itself also in empty space. This 
can be verified easily by equating the two relations each of which describes 
the probability of one point being occupied and the other unoccupied, 

c(l - Z(r)) = (1 - c) (l - Z'(r)) 

Now in order to calculate the integral in equation 103 we must first set 
up a table of probabilities for the different situations at points x and 
x + r. 

Nature of Points Value of 
Probability of Occurrence 

x and x + r 1](X)1](X + r) 

Occupied Occupied p 2 (1 - c) 2 cZ(r) = c2 + c(l - c)y(r) 

Occupied Empty - p 2c(l - c) c(l - Z(r)) = c(l - c) (1 - y(r)) 

Empty Occupied -p2c(l - c) (1 - c) (1 - Z'(r)) = c(l - c)(l - y(r)) 

Empty Empty p•c• (1 - c)Z'(r) = (1 - c)' + c(l - c)y(r) 
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Now by carrying out the integration 

~ J 17(x)17(x + r) dx = p2c(l - c)y(r) 

where equation 105 has been used, it can be seen that equations 103 and 
106 define the same function. 

Thus the scattered intensity can be determined immediately from 
equation 104, 

l'° sin hr 
J(h) = f 6(h) V p2c(l - c) y(r) -- 4irr2 dr 

o hr 
(107) 

This expression can be linked to the equation relative to a single particle, 
equation 21. Let us consider a very dilute system of identical particles 
of arbitrary orientations. The probability Z(r) is then approximately 
equal to the function we have called the characteristic function of a 
particle, y 0(r) (see p. 12), since by virtue of the dilution of the system 
there is only a negligible chance of finding an occupied point outside of 
the particular particle in which the origin point is chosen. Then since 
I - c ~ 1 and c is negligible, equation 106 gives y(r) = y0(r). In 
addition Ve is the total volume of particles, Nv0 • Therefore equation 
107 is equivalent to equations 21 and 55. 

Mathematically, J(h) is determined entirely by a knowledge of y(r). 
However, the calculation of y(r), very complex for an isolated particle, 
is rarely possible for systems of particles of a given arrangement. Con­
versely, the characteristic function of the sample can be determined from 
the experimental measurement of J(h). This function y(r) contains all 
the information that can be obtained from the small-angle scattering 
experiments, but unfortunately this function does not give a direct image 
of the structure and is quite far from defining it. The effects of both the 
form of the particles and their mutual arrangement are intermixed in 
the single function y(r). Theories are discussed in §2.2.3 which have as 
their object the separation of these two effects. 

Nevertheless, several parameters having simple and precise inter­
pretations can be obtained from y(r), as was done for the function of a 
single particle. 

y(r) is equal to unity when r is zero and tends asymptotically to zero 
as r becomes large. It can take on negative values, greater than -c/(1 -c), 
while the function for an isolated particle is always positive. 

1. The slope of the curve at the origin is 
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The slope of Z(r) at r = 0 can be calculated for the complex system in the 
same way as for the isolated particle. If S is the total surface area of the 
matter contained in the volume V, the real volume of matter being only 
V c, then from equation 24 

(dZ) 1 S 
dr r-o = -4 Ve 

Therefore 

( dy) - - 1 ~ - - 1 8 
dr r-o - 4c(l - c) V - 4c(l - c) •:i> 

where S •:i>' the specific surface, is the surface area per unit volume of the 
sample. From this, following the reasoning leading to equation 26, the 
asymptotic behavior of the intensity curve is found as 

2TTp1S 
I(h) R:i IB(h) h' (108) 

The absolute value of the scattered intensity in the tail of the curve 
depends only on the total surface area of the matter in the sample. If 
the object is made up of n identical particles of volume v and surface a, 
the total free surface S is always approximately equal to na, whatever 
the degree of aggregation of the particles, provided that these are of some 
arbitrary form and that they will not become distorted. The intensity 
can be written as 

l(h) = I.(h)np2(2TTB/h4) 

It is equal to n times the average intensity scattered by one particle. 
This shows that at large angles interparticle interferences are negligible, 
even for particles of uniform size. It is therefore valid to apply equation 
95 to dense systems. This does not mean that the intensity curve at 
small angles will not be modified considerably by the action of particles 
drawing closer together. Let us point out also that the above argument 
will not be valid for particles in the form of broad platelets parallel to 
one another, since the packing together of such particles can make the 
interfaces disappear, decreasing the total surface and thus the scattered 
intensity by a large amount. We have already mentioned (p. 70) that the 
effect of interferences for one-dimensional systems is much larger than for 
a powder of irregular grains. 

2. The area of the curve f 00 y(r) dr can be calculated either from the 
f"' Jo 

integral Jo hl(h) dh (see equation 29) or from the total energy E scattered 
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in the low-angle region for a given incident beam intensity (see equation 
30). Equation 107 gives 

.!!.= r dr= --dh l i<Xl 1 i"' hl(h) 
2 o y( ) 47r V p 2c(l - c) o I.(h) 

(109) 

and 

f cc 1 1 E 
Jo y(r) dr = 2V p 2c(l - c) J.2p2 I.(h) (110) 

where p is the distance from the sample to the film. l0 is a parameter that 
has been called the distance of heterogeneity by Kratky and Porod. In an 

isolated particle l (equation 25) represents a mean value of the diameters 
passing through every point of the particle in all directions, but what is the 
geometrical significance of l 0 for an arbitrary system1 Let us draw a 
straight line in an arbitrary direction from a point in matter. This line 
will be divided into segments which are alternately occupied and 
unoccupied by matter. The ratio of the total length of occupied segments 
to that of unoccupied segments is equal to the ratio of the occupied and 
unoccupied volumes, that is, e/(1 - c). The probable occupied length in a 
line of length L drawn from the point chosen as origin is found from the 
definition of Z(r) (equation 106) to be 

LLZ(r) dr =Le + (1 - e) LL y(r) dr 

,..., Le + (1 - e) L cxi y(r) dr 

This length is larger than the mean occupied length Le of an arbitrary 
section of length L, because by imposing the condition that the section L 
starts from a point occupied by matter the chances of finding an occupied 
section are increased. This excess length is simply (l - c) (l0/2). 

3. In the general case there is a normalization relation analogous to 
equation 28, 

L"'h2l(h) dh = 2112I.(h)p2Vc(I - e) (111) 

4. The roles played by e and (1 - e) in equation 107 are symmetric. 
In addition the characteristic function y(r) is the same for an object and 
for its complementary object (Fig. 66, p. 192). Therefore the same 
scattered intensity is found for two complementary objects in the angular 
region in which equation 107 is valid ( §2.2.2.2). 
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3. EXPERIMENTAL EQUIPMENT 

3.1. GENERAL CONSIDERATIONS 

The object of an X-ray scattering experiment, whether in the small­
angle region or in the usual domain of investigation, is the determination 
of the variation of the intensity scattered by a sample as a function of the 
scattering direction, this direction in general being defined by two para­
meters. In the important particular case in which the scattering is 
circularly symmetric about an axis coincident with the incident beam, 
only one parameter, the scattering angle, is involved, and the object 
of the experiment is simply the determination of the relative value of 
J(h), with h = (47T sin B)/} •. 

Experiments can also furnish a second quantity, less frequently 
employed, which is the absolute value of the scattering coefficient, a. 
This is defined by means of the relation, I = I 0a dm d.Q, where I is the 
power scattered by the particle of mass dm in the solid angle d.Q, and I 0 

is the intensity of the incident beam striking the sample. The sample is 
assumed to be small enough to be non-absorbing. 

3.1.1. OPERATIONAL PRINCIPLES 

The method employed to realize the objectives discussed above is not 
different in principle from that used in all experiments in X-ray crystal­
lography. Special difficulties are encountered, however, in investigating 
the scattering at very small angles. 

1. Geometrical Definition of the Incident Beam. Following the notation 
of Fig. 22, let MM' be the portion of the sample which is irradiated. Each 
point of the sample will receive a beam of rays whose divergence depends 
on the constitution of the incident beam. Rays will converge at the point 
of observation P which have been scattered by each of the points of the 
sample through angles varying in an interval 2d() about a mean value, 
20. The interval df) is practically independent of B, so that good definition 
of the scattering angle in relative value is more difficult to obtain, the 
closer a scattering angle of zero is approached. 

Furthermore, there will always be an angular region inaccessible to 
experiment; this is the region between N and N' of Fig. 22, in which 
the scattered radiation received at any point is completely overshadowed 
by the much greater intensity of the direct beam at this point. Thus, to 
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investigate scattering at small angles, it is necessary to reduce both the 
cross section and the divergence of the primary beam, the restriction being 
greater, the smaller the limiting angle of observation that is desired. As 
a result, the beams employed are much less intense than those used in 
ordinary techniques, so that a determination of the best geometrical 
conditions is essential. 

x-~ra~y~~~~~~~~;::T'~~;;:;:;~~~~;;;;~~~~~R 
source 

N' 

Observation D' 
plane 

Fig. 22. Slit system for a small-angle aoattering apparatus. 

2. Parasitic Scattering. The measurement of the intensity received at 
the point of observation is a correct measure of the intensity scattered by 
the sample only if there is no parasitic scattering. The term parasitic 
scattering refers to the radiation received at the point of observation 
when the sample is withdrawn from the beam. If a Geiger counter or 
ionization chamber is employed as a detector, the parasitic scattering 
can easily be subtracted from the observed scattering to give the corrected 
value, but this procedure is acceptable only if the correction is small. If 
photographi~ detection is employed, it is very difficult to make the 
correction by the above procedure. The reduction of the parasitic scattering 
is thus· the second important requirement, and here again the suppression 
is more difficult, the smaller the angles at which scattering is to be 
observed. 

Thus we can say that the quality of a small-angle scattering apparatus 
is characterized by the power of the beam for a given fineness of dimensions 
and by the angle beyond which all parasitic scattering is eliminated. 
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A third critical property of such an apparatus is the spectral purity of 
the primary radiation. We shall consider successively equipment without 
and with monochromatization, showing the different domains of 
application of each. 

3.1.2. INFLUENCE OF THE MONOCHROMATIZATION OF THE 
PRIMARY RADIATION 

Use may be made of either filtered or crystal monochromated radiation, 
depending on the nature of the sample to be studied. 

1. The total radiation from the anode, with the usual filtering to remove 
the K{3, may be used in a study of low-angle crystalline diffraction effects 
that are analogous to the usual high-angle phenomena, differing only in 
that the effective lattice spacings are very large. These patterns contain 
lines, spots, or rings at well-defined angles, and the corresponding inten­
sities are considerably larger than those at intermediate angles on the 
patterns. Thus, as with ordinary diffraction patterns, the diffraction 
effects due to the characteristic radiation emerge from the continuous 
background of diffraction and scattering caused by the continuous 
spectrum. Often the primary objective of such a study is to determine 
the position of the lines or spots, and in these circumstances even a rather 
strong parasitic scattering may be tolerated. 

2. The opposite case is the study of continuous scattering of the type 
that has been described in the first part of this book. This continuous 
scattering is often extremely weak and is superposed on the scattering 
of various other origins, such as the inactive parts of the sample (the 
solvent, for example, when the scattering of particles in solution is studied). 
Given the actual state of the theory, it is essential in this type of problem 
to have a precise evaluation of the function J(h). 

It is easy to see that in certain cases the influence of the continuous 
spectrum may be considerable, since, in addition to the intensity J(h) due 
to the principal radiation of wavelength A.0 , one will also observe a scattering 
of the form 

f I ( ~ h) f(A.) dA. 

where j(A.) is the distribution function of the energy in the continuous 
spectrum. The effect of all the continuous spectrum can thus be large 
with respect to that of the characteristic radiation. Experiments by 
several authors have proved that an investigation cannot be made free 
from all objection without the use of monochromatized radiation. 

When Geiger-counter detection is used, the elimination of the continuous 
spectrum by the double filter method of Ross (Kirkpatrick (1939)) is often 
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sufficient, but this method is not easily applied with photographic 
techniques. The most practical and the most general method of pro­
ducing monochromatic radiation involves the use of a cryBtal mono­
chromator. Since the use of a monochromator profoundly modifies the 
geometry of the equipment, we shall study separately the system with 
collimation, designed for st~dies of crystalline diffraction, and the system 
wit:ii monochromatization, especially adapted to the study of the continuous 
scattering. 

3.2. SYSTEMS EQUIPPED WITH COLLIMATORS 

The beam (see Fig. 22) is defined by two apertures, 01 and 0 2, separated 
by a distance v, which are placed before a source of radiation large enough 
to illuminate the entire opening. As the edges of 0 2 are touched by the 
direct beam, they are sources of scattered and diffracted radiation. Thus 
it is necessary to protect the plane of observation by introducing a third 
aperture, 0 3, at a distance w from 0 2, whoBe edgeB clOBely approach but do 
not touch the incident beam. Apertures 0 2 and 0 3 then define the region 
DD' which is not exempt from parasitic scattering, The sample is placed 
after 0 3 , as close to it as the supports will permit. The sample and the 
opening 0 3 are thus at approximately the same distance from the plane 
of observation; this distance is denoted by B. 

We want to determine the form and dimensions to give to the various 
apertures in order to obtain the "best results" for our measurements. 
We must first specify the known quantities of the problem and the criterion 
of quality to be required. This cannot be done until the nature of the 
pattern given by the sample has been specified. 

3.2.1. COLLIMATOR FORMED BY TWO SLITS 

Let us consider the simple problem of the study of the equatorial line 
of a crystalline "fiber pattern." Our attention is thus devoted to 
diffraction effects in only one dimension. The collimator openings can 
then be infinitely long slits parallel to the "fiber axis" (perpendicular to 
the plane of Fig. 22), and the diffraction spots will appear as lines. We 
shall impose the following conditions: 

I. Let us define the angular uncertainty of the pattern as the variation 
in scattering angle of the rays arriving at a point Pin the plane of observa­
tion. Such rays scattered from an incident ray M 1 R are scattered through 
an angle equal as a first approximation to P R/B, whatever the position 
of the diffracting point M 1 on the sample. Thus the maximum variation 
of the scattering angle, 2d(J, for the group of rays converging at P (the 
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angular uncertainty of the pattern), is measured by the quantity, 
A = a/s, where a is the width of the primary beam in the plane of observa­
tion, and s is the sample-to-film distance. The largest lattice spacing 
which can give rise to a line distinct from the direct beam will then be 

dmax =A/A 

2. The scattering angle inside of which parasitic radiation is found is 
B/2 = b/2s, where b is the width of the part DD' of the film receiving 
scattered radiation in the absence of a sample. The upper limit of the 
lattice spacings which will register outside of all parasitic scattering is 
then d'max = 21/B. Obviously B is larger than A, and usually it is 
larger than 2A, so that d'max < dmax· 

3. Either Geiger-Muller counters or photographic plates may be 
employed as detectors, but the conditions that apply to each are different. 

(i) If a Geiger-Muller counter is used, it must be equipped with an 
entrance slit so that the divergence of the rays scattered by a point on 
the sample that enter the counter is fixed and clearly less than A (A/10, 
for example). If this condition is satisfied, it is possible, at least 
theoretically, to correct the observed pattern for the effect of the width 
of the direct beam (see §3.4). 

For a given angular uncertainty, A, the counter slit width is proportional 
to s. Since, for constant A, scan be arbitrarily chosen without affecting 
the measured power, it is then advantageous to employ a large value of s 
so that the counter slit can be more easily constructed. The only 
restriction is that s must be less than a limiting value, s0 , determined by 
the mechanical conditions and obstructions. 

(ii) The limitations of the photographic method arise from the grain 
size of the film, which is always rather large for emulsions sensitive to 
X-rays. X-ray patterns cannot be usefully enlarged by a factor of 10. 
The resolving power of these films is of the order of a hundredth of a 
millimeter; thus the exploring slit of the microphotometer should have 
a width of this order of magnitude, £. Consequently the sample-to-film 
distance s has a lower limit, sP, such that £/sP is clearly smaller than A 
(for example, A/10, as suggested in the preceding case). 

4. The study of very small angles necessitates the use of beams which 
are very narrow an_d, consequently, of low power. It is essential for the 
success of the experiment that the system be found which allows the most 
powerful beam, while satisfying the geometrical conditions previously 
enumerated. Specifically, it is necessary to try to maximize the number 
of photons received by a counter placed at the center of a diffraction line 
or to maximize the blackening of this line on a film. The most desirable 
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form for a sample is that of a small plate intercepting the entire beam, 
the thickness being chosen in accordance with its absorption coefficient. 
(It is well known that the optimum thickness is that for which the ratio 
of the transmitted to incident intensity is the factor, l/e ~ 1/3.) Now, 
for simplicity let us assume that the point of observation is in a region of 
the pattern in which the variation of intensity with angle is very small, 
as, for example, in the center of a rather wide diffraction line. Then, for 
a given slit width, the intensity of the radiation entering the counter will 
be proportional to the total power of the primary beam incident on the 
sample per unit collimator slit height, 11. When photographic detection 
is employed, the blackening at the same point will be proportional to 
11/s (we are considering one-dimensional diffraction effects, so the factor 
Ifs rather than l/s2 intervenes). These are the factors that must be maxi­
mized respectively in the construction of the collimator when the detector 
is a Geiger counter or a photographic film. 

Bolduan and Bear [205], in an analogous calculation, chose a criterion 
which seems to us to be on a less general level; they maximized not the 
total power of the incident beam but rather the intensity of the radiation 
striking the plane of observation at the center of the direct beam. Their 
conclusions are clearly different from those we shall draw. This shows 
that, if in a given experimental problem some of our assumptions are not 
satisfied, it will be necessary to discard our conclusions and to make an 
analogous calculation with appropriately modified factors. 

5. The source of X-rays is assumed t.o be an X-ray tube with a 
rectangular focal spot of large length and of width l, so oriented that the 
long dimensions of the focal spot and the slits are parallel. The emerging 
rays make an angle, cc, with the plane of the target. If the power per unit 
area delivered to the target by the incident electrons is&, the intensity 
of the emitted X-rays will be proportional to &/cc, if cc is larger than a 
limiting value, cc0 , of the order of 1° or 2° (Bolduan and Bear [205]). We 
shall fix cc at this optimum value, cc0, and we shall place the first slit of the 
collimator close to the focal spot; the width, p, of the slit 0 1 is then 
determined as the projection of the focal spot, lcc0 . 

Let r be the width of the second slit, 0 2, which is placed at a distance 
v from 0 1 . The power of the beam defined by the collimator 0 10 2 will 
then be proportional to 

& r &lr 
-p-=-
IXo V V 

The third slit, 0 3 , of width q, is placed at a distance w from 0 2 • Let 
us recall that the ratio a/s has been denoted by A and the ratio b/s by B. 
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The following relations, deduced from simple geometrical considerations, 
exist between these different quantities (Bolduan and Bear [205]): 

(p + r)/v <A 

w = 2r/(B-A) 

q = r [ l + v(B2~ A)] 
r 2(p + r) + v(B - A) 

8 = --- x --------
B - A Av - (p + r) 

3.2.1.1. Calculation of the Optimum Collimator 

(1) 

(2) 

(3) 

(4) 

(a) Geiger-Muller Counter Detector. The collimator should be chosen 
so as to maximize pr/v and thus r/v, since p is fixed. For a given value of 
v the choice of maximum r by means of equation l leads to the relation 
rmu.x =Av - p. This value of r corresponds to an infinite value of s, 
however, as is seen from equation 4. But, as rand s vary in the same 
way, ifs is made equal to its maximum value, s0 , there will be an optimum 
value of r, r0(v), for each value of v. Thus, by letting v vary, a maximum 

for the ratio r.(v) can be found, which determines the value to be selected 
v 

for v. The rest of the geometry of the system is then determined by 
means of equations 2, 3, and 4. 

(b) Photographic Detection. For this system the collimator should be 
chosen so as to maximize the function 11/s = 9lr/vs. This requires that 
s be a minimum, that is, thats have the values,, determined by the grain 
size. A calculation similar to that outlined for the previous case but 
with s0 replaced by s21 then leads to the determination of the optimum 
value of v and the values of the other unknowns of the system. 

EXAMPLE. The focal spot of the tube has a width of l mm. For an 
angle of emergence of l 0 the source corresponds to a first slit of width 
p = 20 µ. The parameter describing the angular uncertainty of the 
pattern, A, is chosen as A = 10-3• This means that for Cu Ka. radiation 
(A = l.54 A) the diffraction line for a lattice spacing of 154;0 A will just 
be separated from the trace of the direct beam. In addition we shall 
require that the parasitic scattering be stopped beyond an angle corre­
sponding to a lattice spacing of 1200 A; this determines B as 
B = 2.5 x 10-3• 

(a) Counter Detection. Let the largest possible sample-to-counter 
distance be s0 = 500 mm. The efficiency of the system is given by 
curve a of Fig. 23 in which the ratio r/v is plotted as a function of the slit 
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separation v. The maximum of the curve determines the following 
parameters: -

v= lOOmm. w= 77mm. 

r 0 = 58 µ q = 120 µ 

(b) Photographic Detection. Let the minimum sample-to-film distance 
be: s'P = 100 mm. If the film is investigated with a microphotometer 

riv 

0.6 

o.s 

r/v 

0.5 

0.3 

(a) 

O.O .___5_._0 _____ l_._00-----1~50----v~ 

(b) 

Fig. 23. Calculated collimator efficiencies. 
(a) Counter detection. (b) Photographic detection. 

with a 20µ slit, this slit will then be 5 times as narrow as the trace of the 
direct beam on the film. The efficiency of this system is given by curve b 
of Fig. 23, in which again the ratio r/v is plotted as a function of the slit 
separation v. 

The optimum conditions as determined from this curve are: 

v = 70mm. 

rjl = 24µ 

w =31 mm. 

q =47 µ 
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The maxima in the efficiency plots of both these systems are very fiat. 
The slit separation v could vary between 60 and 190 mm. in the first 
system or between 50 and 100 mm. in the second without causing a 
10 per cent loss. Consequently there is considerable latitude for accom­
modation of particular supplementary conditions. 

The preceding calculations are given as an example, but, as we have 
already emphasized, they are valid only if all the conditions imposed by 
the hypotheses are satisfied. If, for example, there is available a demount­
able tube whose focal spot dimensions can be varied, it is advantageous to 
diminish the size of the focal spot because the brilliance of the focal spot 
increases, the smaller its dimensions, at least until the diameter approaches 
a limiting value between 50 and 100 µ. Such a change of the dimensions 
of the focal spot has an important influence on the values taken for r 
and v. 

3.2.2. COLLIMATOR WITH CIRCULAR OPENINGS 

Let us now consider a sample which gives rise to a scattering in various 
directions that does not show rotational symmetry, such as, for example, 
fixed crystals without special orientations. For this study it seems 
logical to employ cylindrical collimation. We shall preserve the same 
notation as used in the preceding section, except that p, r, w, a, and b will 
refer to diameters instead of widths of the apertures and the beam 
cross sections. The power of the primary beam is then proportional 

!}J p2r2 
to--. 

oco v2 
The quantities to be maximized for Geiger-Muller counter and 

photographic plate detection are then 
&' p2r2 &' p2r2 

respectively - - 2- and - 22 . 
cc 0 v <7.o t' s 

These are the same conditions as were found for the slit collimators. 
Actually this system is not often employed, because it is more difficult 

to obtain adjustable holes than adjustable slits. In practice two slits 
oriented at right angles are generally used, so that the beam is defined by 
square or rectangular openings. This general problem is too complex, 
and we shall consider it only for the case in which the sample gives a 
circularly symmetrical pattern, that is, when the diffracted intensity is a 
function only of the diffraction angle 20. 

3.2.3. COLLIMATOR WITH SLITS OF FINITE HEIGHT FOR THE STUDY 
OF CIRCULARLY SYMMETRICAL DIFFRACTION PATTERNS 

Our study will be extended only to the intensity diffracted in the plane 
perpendicular to the Large slit dimension. Experience with ordinary 
powder patterns has shown that intensity considerations are best served 
by the employment of beams defined by slits. Let us consider how this 
concept may be made more specific for a study of small-angle scattering. 
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Following the notation of Fig. 24, the primary beam, defined by 
rectangular openings of dimensions Pv p 2, and r1 , r2, cuts the plane of 
observation (II) in a rectangle of sides ai and a2, these being widths and 
heights respectively. Let P be the point of observation in the horizontal 
plane; the radiation scattered to P from the central ray of the primary 
beam is scattered through an angle 2(} = OP/s. Similarly, radiation 
scattered to P from any ray whatsoever of the primary beam which 

Fig. 24. Collimator with slits of finite height and width. 

intercepts the plane (II} at the point M is scattered through an angle 
which, to a first approximation, is 2(} = 1ll P/s. The maximum un­
certainty of the scattering angle is then given by 

A= PMmax - PMrnin = PQ- PR 
8 8 

The use of this expression for A to characterize the accuracy of the 
pattern imposes too severe a condition, since the edges of the beam will 
intervene much less than the central part (primarily because of a pen­
umbra] effect). A more accurate calculation, however, not only would be 
more complex but also would lack generality. 

It can easily be seen that if u = 4 OPQ 

R'Q a2 
tanu= -- = ----

R' P 4s(} + a1 
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and 

PQ PR (' a1) 1 ( a1) A= - - - = 2(} + - - - 2(} - -
8 8 2s cos u 2s 

Ifni and a2 are small with respect to 2s(}, theo. 

al a22 

A = -; + 1682(} (6) 

For large scattering angles the angular uncertainty A is thus primarily 
due to the width of the slit, but as small angles are approached the 
influence of the slit height becomes preponderant. For example, if our 
system is-to be designed so that the two causes of error, the width and the 
height of the slit, are to contribute equal parts to A, then if we choose A 
as 10-3, as in a previous example, the choice must be a1/s = a 22/16s2(} 

= 0.5 X 10-3, 

For 2(} = 0.1 radian, this requires a slit height 40 times the width; on 
the other hand, for 2(} = 0.001 radian, the ratio of height to width is only 
a factor of 4. 

Our primary problem is to determine the best arrangement of two rec­
tangular slits for a collimator to be used for studies of small-angle dif­
fraction. It is impossible to solve this problem for the completely general 
case. The angular uncertainty of the general pattern is unlike that of the 
one-dimensional pattern; it cannot be a constant but must increase with 
decreasing angle. Thus only particular cases can be treated, of which we 
offer two examples: 

(a) Let us consider the system described on p. 89, which employs a 
counter as a detector, and let us replace the infinite slits by slits of the 
same widths placed in the same positions but of heights p 2 and r2 , 

respectively. The sample gives a circularly symmetrical diffraction 
pattern. An accuracy such that A = 10-2 is wanted at an angle 
2() = 0.01 radian. Since a1/s = 10-3, equation 6 gives a2/s = 0.027; 
thus, since 8 = 500 mm., it follows that a2 = 13.5 mm. Now the total 
power of the beam for a given value of the slit separation v is proportional 
to the product of the areas of the two openings. The beam power will 
thus be a maximum when the product p 2r 2 is maximized, since p 1 and r1 

are fixed. There is in addition a geometrical relation between p 2 and 
r2 (see Fig. 24) 

v 8 

From these relations the optimum parameter values are found to be 
p 2 = 1.35 mm. and r2 = l.14 mm. 
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(b) As a second problem let us cite one that has been treated by 
Yudowitch [241]. If the collimator is formed by two identical apertures 
separated by a distance v, what form should be given them so that the 
angular uncertainty of the pattern for a given beam intensity should be a 
minimum at a given angle? The first hypothesis implies a fixed area of 
the collimator openings, Pi.P2 = r1r2 = S. Now the width and height of 
the beam in the plane of observation at-a given distance, s, are propor­
tional, respectively, to p1 and p 2, and thus they are related by the 
expression a1a2 = kS. 

Equation 6 then shows that A is a minimum when 

a1/s = 2A/3 (7) 

~2/16s20 = A/3 

The form of the openings is determined by these relations. 
The principal conclusion of this discussion is that the variation of the 

scattering angle among the various rays reaching the plane of observation 
at one point increases as the average scattering angle decreases. It is 
therefore necessary to reduce more and more the collimator openings and, 
consequently, the power of the primary beam, the greater the accuracy 
desired. This is the major difficulty in experiments concerning small. 
angle diffraction. 

This difficulty can be avoided by either eliminating the cause of the 
error or by calculating a correction to the experimental results. In the 
following paragraphs we shall discuss the efforts that have been made in 
these two directions. 

3.3. SYSTEMS USING MONOCHROMATIC RADIATION 

A mortochromatic primary beam is advantageous, at least theoretically, 
for every type of investigation, but it is indispensible for the correct 
interpretation of continuous scattering. 

3.3.1. SOURCE OF MONOCHROMATIC RADIATION 

A first approach is to employ the same system as previously described 
but to replace the ordinary source by one giving monochromatic radiation. 
It is well known that the continuous spectrum from a tube is weaker, the 
smaller the atomic number of the target material and the lower the applied 
potential. The characteristic radiation of light elements can be excited 
by very low voltages; a tube with an aluminum target operated at 4 kv. 
emits practically pure Al Ka. radiation (Hosemann [80), Yudowitch [186)). 
This technique, however, allows the use of only very long wavelengths 
(Al Ka. : ), = 8.34 A); although this offers the advantage of increased dis­
persion of the pattern, proportional to I., unfortunately absorption is so 
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great that the very small sample thicknesses that are required can be 
prepared only with great difficulty. 

In another method employing long wavelengths, Henke and DuMond 
[76""] isolated the Cu L radiation (13.3 A) by total reflection. The 
incident radiation struck the surface of a polished glass mirror at an angle 
such that only X-rays oflong wavelengths were totally reflected (Compton 
and Allison (1935)). The form of the mirrors was ellipsoidal, so that the 
radiation coming from a point source was focused to a point image. 

3.3.2. BALANCED FILTERS 

The filtering technique usually employed as a means of decreasing the 
relative percentage of the K{J radiation cannot be applied here, since it 
does not appreciably affect a large part of the continuous spectrum. 

T 

Fig. 25a. A schematic diagram of the Beeman apparatus with slit 
collimation. Tis the X-re.y source; F 1 and F 1, the collimator slits; 

S, the sample; F 8 and F,, the counter slits; C, the counter. 

Ross and later Kirkpatrick (1939) developed a balanced filter technique 
that uses two patterns, each made with a different filter; the two filters, 
whose K edges bracket the wavelength to be employed, are of such 
thicknesses that the difference in the scattered intensity of the two 
patterns is due almost exclusively to the selected wavelength. For 
example, if Cu Ka. radiation is to be used, one filter would be of nickel 
6.84 x 10-3 mm. thick, and the other would be of cobalt 7.60 x 10-3 mm. 
thick. Kratky [112] has used balanced filters in conjunction with 
photographic detection, but this is a difficult technique, since the 
differences in intensity of two patterns or of the two halves of one pattern 
cannot be determined with great accuracy. However, the balanced 
filter method becomes one of the best techniques when it is used in com­
bination with a Geiger counter. 

Figure 25a shows a schematic drawing of the apparatus used in the 
laboratory of Beeman [376]. The source of X-rays is a rotating anode 
tube whose high power has been shown to be necessary for studies of 
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weakly scattering substances. The beam is defined by a collimator 
composed of two slits separated by a distance of 30 to 50 cm. The 
specimen is placed from 15 to 25 cm. beyond the second slit. A second 
pair of slits with the same separation as the first pair are placed on an 
arm which rotates about an axis through the specimen up to an angle of 5° 
with respect to the incident beam. The third slit, F 3, acts as the aperture 
0 3 in the general diagram of Fig. 22, serving to stop the parasitic scattering 
and not defining the geometry of the useful beam. The background 
intensity may be less than _I0-7 of that of the direct beam. The double 
filter is placed immediately in front of the counter. The useful intensity 
is measured by the difference between the number of counts obtained when 
first one filter and then the other is employed. 

i:I:'he balanced filter is ineffective if the sample, under the action of the 
continuous spectrum, emits fluorescence radiation of the same wavelength 
as that of the principal primary radiation, since the intensity to be 
measured is found as the difference between very large numbers. 

Beeman and his collaborators later used a proportional counter as a 
detector. When this is employed with the appropriate electronic cir­
cuitry, the sensitivity of the apparatus is restricted to wavelengths lying 
in a narrow band around that of the chosen radiation (Arndt, Coates, and 
Riley (1953)). 

In a new apparatus shown in Fig. 25b, Beeman and his coworkers 
replaced the collimator slits by pinholes in order to eliminate the difficult 
corrections for the effects of slit height ( §3.4.2). The intensity of the 
incident beam is reduced considerably by this modification. In order to 
make possible reliable measurements (for samples that give a circularly 
symmetric pattern), the counter slit is made in the form of a ring-like 
aperture centered exactly on the axis of the direct beam. The scattering 
angle is then varied by displacing the counter and sHt along the axis of the 
direct beam, either towards or away from the sample. 

3.3.3. MONOCHROMATIZATION BY CRYSTALLINE DIFFRACTION 

Crystalline diffraction offers the most precise method for mono­
chromatization of radiation and the best method for use with photo­
graphic measurements. We shall thus consider at length the different 
techniques that have been proposed. 

3.3.3.1. Plane Monochromator 

The simplest system is that employing a flat single crystal. The usual 
crystals can vary in type from the perfect crystal, which gives a sharply 
defined, low-intensity beam, to the very imperfect crystal, which gives an 
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intense but poorly defined beam whose divergence is equal to the range 
of orientations of the reflecting crystalline planes. 

The characteristics of the different crystals that are most easily obtained 
have been compared by Lipson, Nelson, and Riley (1945), who recommend 
for small-angle scattering studies the use of the (100) planes of calcite. 

Fig. 25b. A sketch of the Beeman apparatus with pinhole collimation. 
A is the rotating target tube; B, the collimating pinholes; 0, the 
vacuum connecting tube; D, a vacuum extension tube; E, the guard 
ring and specimen; F, an extensible plastic tube filled with helium; 
G, the beam stop for the direct beam; H, the annular slit before the 
proportional counter J and preamplifier K; L, a sliding base for the 

annular slit and counter. 

These planes, though of weak reflecting power, give an extremely sharp 
beam in which the Ka.1 and Ka.2 reflections can be separated. Quartz 
(lOll) planes give a still weaker beam. Pentaerythritol, on the other 
hand, gives a very intense reflection, but not only is the beam divergence 
very large, but also the crystal is unstable. 

To concentrate the power of the diffracted beam Fankuchen (1937) 
proposed to cut the surface of the crystal in such a manner as to diminish 
the cross section of the reflected beam, as is shown in Fig. 26. If the 
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angle between the surface and the reflecting crystalline planes is d.. and 
the Bragg angle is(}, the angles made by the primary and diffracted beams 
with the surface are, respectively, (} + oc and (} - oc. This gives the ratio 

sin((} - oc) 
of cross sections as . Evans, Hirsch, and Kellar (1948) 

sin((}+ oc) 
studied in detail the practical possibilities of this process and reached the 
following conclusions: there is a maximum theoretical intensity gain of 2, 

Fig. 26. The plane monochromator proposed by Fankuchen. 

but this factor cannot be attained in practice. There exists an optimum 
angle of cut, slightly smaller than (}, The gain obtained depends to a 
large extent on the state of the crystal surface; the best results were 
obtained with calcite crystals which were cut, polished, and then very 
lightly rubbed with either very fine emery paper or the point of a pencil. 

A perfect crystal also collimates the diffracted radiation, functioning in 
this respect as a slit at an infinite distance viewed through a negligible 
angle. Figure 27 shows the arrangement of the diffraction apparatus 
employing a plane, perfect monochromator. Radiation from a source of 
width p is diffracted into a beam of constant width (neglecting the 
spectral width of the characteristic radiation); thus the width of the 
direct beam at the plane of observation is p. The sample is at a distances 
from the plane of observation and at a distance w from the monochro­
mating crystal. It is necessary to place a slit. just before the sample to 
eliminate the strong parasitic scattering arising from that part of the 
surface of the monochromator touched by the direct, polychromatic 
beam. The angular uncertainty of the scattering pattern is given by the 
quantity A = p/s, and the angular region within which there is parasitic 
scattering is B/2, where 

B = b/s = (2p/w) + (p/s) 

Thus for given values of A and B these relations determine the values 
of w and s, the source width p being fixed. 
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In determining the angular region obscured by parasitic radiation we 
have assumed that only the useful region on the monochromating crystal 
receives radiation. This requires that the equipment include a second 
slit, F, of width p, placed as close as possible to the monochromating 
crystal. This slit plays no role in the collimation of the incident beam 
but acts only to reduce the parasitic scattering. After the mono­
chromator crystal has been adjusted so as to produce the reflected beam, 

X-ray source 

Fig. 27. A small-angle scattering apparatus employing a plane 
monochromator. 

the independently adjustable edges of this slit should be closed to the 
precise width at which the reflected beam begins to be narrowed: the 
extent of the region containing parasitic scattering will then be a minimum. 

If the monochromator crystal is not perfect, there will be a divergence 
of the reflected beam equal to the disorientation of the crystalline planes. 
This disorientation is the minimum value of A that can be realized. 
Another cause of divergence of the reflected beam is the oc1-cx2 doublet 
nature of the characteristic K radiation. For example, the divergence of 
Cu Kcx radiation reflected from the cleavage planes of calcite is 0.65 X 10-3 

radian. This divergence is larger, the greater the diffraction angle of 
the monochromator. Thus Lipson, Nelson, and Riley (1945) have sug­
gested the use of a crystal of gypsum, which has a very large spacing for 
its cleavage planes (7.85 A). This would reduce the Cu Kcx divergence to 
0.25 x Io-a radian, making possible theoretically the resolution from the 
direct beam of reflections due to spacings as great as 6000 A. 
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The primary disadvantage in the use of plane crystals as mono­
chromators is the low power of the reflected beam, which seriously limits the 
possibilities for practical application of this method. Two other methods 
will now be discussed that offer several important improvements: (1) an 
increase in intensity of the monochromatic beam: (2) a decrease in the 
angular uncertainty of the pattern; (3) an elimination of the parasitic 
scattering beyond quite small angles. These methods depend on the use 
of the bent crystal monochromator and the double monochromator. 

(a) (b) 

Fig. 28. Johann bent crystal monochromators: 
(a) symmetrical; (b) asymmetrical. 

3.3.3.2. Bent Crystal Monochromator 

Bent crystals were originally introduced in X-ray spectroscopy, serving 
as analyzers capable of producing intense spectra; they can serve equally 
well as monochromators. When they are used as monochromators, a 
system employing reflection geometry is particularly advantageous. The 
simplest of these is that described by Johann ( 1931): A thin plate is bent 
elastically (or plastically) to a radius of curvature R; then, with the 
arrangement shown in Fig. 28a, rays from the source S, diffracted at an 
angle (} by the bent crystal, are focused approximately at a point F, with 
the source, the crystal, and the focus lying on a circle C of diameter R. 
This focusing is exact if the surface of the crystal is coincident with the 
arc of the circle, the radius of curvature of the lattice planes remaining 
the same, i.e., R. This is accomplished by the technique of Johansson 
(1933): The plate is first cut cylindrically to a radius Rand then curved 
onto the circle of radius R/2; the radius of curvature of the diffracting 
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planes is then R, as before. The Johansson technique is of interest only 
if beams of large divergence (greater than 1°) are to be used, which, as we 
shall see, is not true for small-angle scattering studies. 

If the crystal slab is cut so that the reflecting planes make an angle <X 
with the surface of the slab, an asymmetric monochromator is obtained 
(Guinier (1946)) for either the Johann or Johansson systems (Fig. 28b). 
The ratio of the distances of the source and the focus from the crystal is 
sin (0 - <X) 
. (O • This arrangement has the advantage that the distance of 

sm + <X) 
the focus from the crystal can be made large without having to place the 
source farther away from the crystal. 

For small-angle scattering studies, the bent crystal not only serves as 
a monochromator but it also has the advanf,age of producing a beam which 
is geometrically very well defined; the diffracted beam converges to a fine 
line even when the beam divergence, and hence power, is quite large. 
Thus, if the plane of observation passes through the focus F, normal to 
the beam, the angular uncertainty of the pattern is not dependent on the 
beam power, as was true for the system with a simple collimator. The 
width of the trace of the primary beam is determined primarily by the 
separation of the Ka. doublet, the effects arising from the geometry of the 
system being much smaller. For example, ifthe monochromator consists 
of a thin slab of quartz cut at an angle of a.= 3° to the reflecting (lOll) 
planes and curved to a radius of 500 mm., the distance from the crystal 
to the point of focus for Cu K<X radiation is 140 mm., and the separation 
of the <Xi-IX:! doublet corresponds to an angle of 2'; the observed beam 
width in the plane of observation is then 0.15 mm. If the sample is 
placed in the beam at a distances= 100 mm. from the plane of observa­
tion, the corr~sponding uncertainty of the pattern will be A = 1.5 X 10-3• 

In this as in the other systems, particularly those employed for the 
study of continuous scattering, the minimizing of the angle beyond which 
parasitic scattering is eliminated is essential. This is done by placing 
just in front of the sample a slit whose edges approach the beam as closely 
as possible, as is shown in Fig. 29. If dis the focal distance, CF, and w is 
the divergence of the beam, the angle obscured by the parasitic scattering 
will be 

B b dw 
-z,._FMD=-=-=--

2 2s d-s 

It is therefore necessary to restrict the distance s to the smallest value 
sJ> for which the pattern will be legible (cf. p. 87). If, in the example 
treated above (d = 140 mm.), we choose sJ> = 80 mm., the obscured angle 
will be B/2 = 2.2w. We are thus led to the following conclusion: although 



102 SMALL-ANGLE SCATTERING OF X-RAYS 

the convergent property of the beam makes the angular uncertainty of 
the pattern independent of the beam divergence, nevertheless this diver­
ge.nee must be strongly limited in order to diminish the range of angles 
which are obscured, since experiments have shown that the parasitic 
intensity is so large that no experiments are possible in this region. 

D 

F 

D' 
-------j"t 

X-ray source 

Fig. 29. A small-angle scattering system employing a 
bent crystal monochromator. 

b 

The system with a bent crystal monochromator then appears to be 
hampered by the same restriction as the systems with a plane mono­
chromator or a collimator; less and less power can be employed, the 
smaller the diffraction angle at which a measurement is desired. There 
remains one important advantage for this system over the previous 
systems employing monochromatization, however; as a result of the 
precise convergence of the direct beam, there is a smaller angular 
uncertainty in the pattern. 

3.3.3.3. Combination of Two Bent Crystal Monocbromators 

The principal cause of the troublesome parasitic scattering lies in the 
fact that the surface of the monochromator is irradiated by the very 
intense direct beam, while use is made of the radiation of a chosen wave­
length, which forms only a small fraction of the total power of the beam. 
This fact led to the idea of employing a double monochromator, in which 
the focus, F 1, of the first bent crystal served as the source for a second, so 
oriented as to reflect the entire incident beam into a beam converging to 
a new focus, F 2 (see Fig. 30). Fournet [48] has studied the geometry of 
this system in detail and has shown that the most desirable arrangement 
is that in which the two crystals are oriented in the antiparallel position, 
since the parallel position allows a narrow spectral band to be reflected 
succest1ively by the two crystals at their optimum mutual orientation. 

The point of interest of this system is that, even without any protective 
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slits, the parasitic scattering is almost completely eliminated beyond an 
angle of about ten minutes from the direct beam. The sample can then be 
placed quite close to the second monochromator, so that with very 
asymmetric monochromators of large radius of curvature, sample-to-film 

X-ray 
source 

F1 

Fig. 30. A double bent crystal monochromator. 
F 1, intermediate focus; F 1 , final focus. 

Sample 

Film 

distances of 300 mm. can be obtained. But, although it has been verified 
that films which are certainly more easily readable are obtained with such 
large distances (at the price of increased exposure times), it has proved 
to be practically impossible to reduce further the angular limit imposed 
by the remaining parasitic scattering. Fournet has made a detailed 
theoretical and experimental study of this scattering; it seems to be 
caused principally by irregularities in the curvature of the lattice planes 
of the two crystals. These irregularities are the results of defects in the 
cutting of the crystal and the crystal holders. The mechanical difficulties 
in making perfect cylinders are well known. Thus from this point of 
view it would seem advantageous to employ uncut slabs of quartz (the 
Johann technique). The best method for cutting the holders is that 
described by DuMond (1947). 

In addition to this effect it seems probable that simple elastic curving 
creates a crystalline imperfection that should cause diffuse scattering. 
As yet no experimental or theoretical analysis of this effect has been made. 

In any event, even for a perfect crystal, there will still be diffuse 
scattering of thermal origin which will be particularly intense in the 
neighborhood of the direction of a Bragg reflection. This scattering, 
however, has never been troublesome in the apparatus we have used. 

The following are the details of construction and the characteristics of 
the double monochromator system we have developed. 

First Monochrmnator. Quartz slab, cut parallel to (1011) planes; 
Johansson technique; elastically bent to 500 mm. radius of curvature. 
Focusing distance of 115 mm. for Cu Koc radiation. 

Second Monochromator. Quartz slab, cut at 3° to (lOll) planes; 
Johansson technique; elastically bent to 500 mm. radius of curvature. 
Focusing distance of 140 mm. The sample is generally placed 100 mm. 
from the film. 
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Numerous trials have been made with quartz slabs of different curva­
tures constructed according to the Johann method. We have verified 
that it is possible, with suitable though delicate adjustments, to eliminate 
one of the components of the KrJ. doublet in the twice reflected beam. 

The parasitic scattering at a point in the observation plane correspond­
ing to a scattering angle of 15' (the angle for a lattice spacing of 300 A) is 
1/100,000th the intensity of the primary beam. If the scattering to be 
studied is not too weak, it can be registered beyond an angle corresponding 
to a 400 A spacing, with the necessary correct.ion for scattering from 
sources other than the sample remaining reasonable. 

At first glance it might be thought that the double monochromatization 
and the large distance from X-ray tube to film would require a prohibitive 
increase in the exposure time. Actually the loss of power of this system 
as compared to that with a single monochromator is not too large. This 
arises from the fact that with a single monochromator it is necessary to 
use beams of very small divergence in order to limit the parasitic scatter­
ing, whereas with the double monochromator the final beam has more than 
a 1 ° divergence. 

Nevertheless, for ease of adjustment of the second monochromator 
with a fluorescent screen, it is almost indispensable to have a very power­
ful source of X-rays. Our system employs a tube with a rotating target. 
With this tube operating at 45 kv. and 45 ma. the exposure times are only 
one-third as long as the exposures necessary with our previous system, which 
employed a single monochromator coupled to an ordinary X-ray tube 
operated at 30 kv. and 7.5 ma. For example, good patterns of a 19 per 
cent solution of hemoglobin (Fig. 31) were obtained with one hour 
exposures. 

In summary, the system of two bent crystal monochromators is a 
substantial improvement over the simple system of a single mono­
.chromator. It does not require the difficult adjustment of a slit in front 
of the sample (see Fig. 29), and the patterns are much purer. Its range 
of application, however, is somewhat limited; parasitic scattering prevents 
approaching the direct beam to angles smaller than those corresponding 
to 300 or 400 A for Cu KrJ. radiation (Fig. 31). We do not think that it 
will be possible to better this limit with such a system. To register 
larger spacings it is necessary to return to a system of successive slits, and 
with that arrangement the double crystal monochromator.is no longer of 
interest and a simple crystal monochromator must be used. 

3.3.3.4. Monochromator with a Point Focus 

Both single and double bent crystal monochromators have the advantage 
of diminishing the width of the trace of the direct beam and, consequently, 
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:Fig. 31. Some examples of patterns obtained with the double 
monochromator. The scale indicates 2° in 20. Patterns a, b, c, and d 
were made with incident beams of small height and patterns e, f, g, 
and h with beams of large height. X-ray tube input: 45 kv. and 40 ma. 

(a) Carbon black. Exposure time: T = I hr. 
(b) Solution of human hemoglobin (19%). T = I hr. 
(c) Human red cells. T = 9 hr. 
(d) Solution of albumin serum (23%). T = 1 hr. 
(e) Chrysotile. T = I hr. 
(j) Hemocyanine (snail blood). T = I hr. 
(g) Egg yolk. T = 2 hr. 
(h) Same sample as ind. T = 3 hr. 
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increasing the accuracy of the pattern. The diffracted beam, though of 
small width, is large in height, and this causes an angular uncertainty in 
the pattern which, as we have seen (p. 93), becomes very important when 
approaching very small angles. As in the system with collimators, this 
height can be reduced only with the aid of slits, and these also reduce 
the usable beam power. 

The bent crystal focuses the rays in one dimension. The ideal system 
would be one which concentrates the rays to a point instead of a line. 
This is the objective of attempts that have been made to develop mono­
chromators with a point focus. 

The first technique consists of curving the lattice planes onto a toroidal 
surface. In order to describe this, let us consider the cylindrical mono­
chromator giving an image, F, of the point source, S, shown in Fig. 28. 
Now let us imagine this system rotated about the axis, SF. The cylinder 
generates a toroid, and, if the lattice planes were curved along this 
surface, the radiation from S would converge to a point at F. 

The toroid, however, is not a developable surface for crystals. A 
crystalline slab cannot be shaped onto a toroid without breaking it or 
introducing such perturbations in the lattice that all hope for good images 
is lost. A solution of this problem consists in deforming a crystal 
plastically rather than elastically (Wilsdorf (1948); DuMond [210]; 
Shacklett [149"]) and in following the plastic deformation with a "poly­
gonization" treatment (Guinier (1952)) by means of a suitable anneal. 
This treatment transf~rms the distorted crystal into a mosaic of small 
crystallites whose reflecting planes are very closely tangential to the 
toroidal surface. Cauchois, Tiedema, and Burgers (1950) have shown 
that excellent images can be obtained with an aluminum crystal cylin­
drically deformed and polygonized, which offers hope that a good toroidal 
crystal can also be made. Hagg and Karlsson [219'] succeeded in 
preparing a toroidal crystal of aluminum with which they obtained a 
beam 50 times as intense as that from a cylindrically bent quartz crystal. 
However, it has not yet been established that this kind of monochromator 
is perfect enough to be usable in small-angle scattering experiments. 

Another technique, based on the successive employment of two crystals, 
is due to DuMond and his collaborators [229]. The two crystals are bent 
slabs which have been cut so that the reflecting planes make a small angle 
with the surface of the slab. Their arrangement is shown in Fig. 32. 
The rays coming from the point source S are diffracted by the first crystal, 
A, and converge towards the vertical line focus, F, parallel to the generator 
of the surface of A. This converging beam appears to come from a 
virtual line source, F', lying in the horizontal plane and situated on the 
circle of center M and of radius SM, where M is the midpoint of the arc 
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SA F. Let 0 be the midpoint of the line FF'. If we now pivot the rigid 
system of source S and crystal A by a 90° rotation about the axis FF' 
followed by a 180° rotation about a vertical axis through 0, the crystal 
A is transformed into a crystal at B, and the source comes to the point P. 
The beam coming from P and diffracted by B again is characterized by 

F ~---------PYr-!'t-+r 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

: I I r _______________ , _________ 1 

I 
I 
I 

F 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

_______ l'...1.'-1--~-U-

Projection 
upon 

vertical 
plane 

Projection 
upon 

horizontal 
plane 

Fig. 32. Horizontal and vertical projections of a point-focusing 
double monochromator according to DuMond et a!. [229]. 

the same two foci, F and F'. Thus, by virtue of ordinary optical prin­
ciples, the beam reflected by the first crystal A and then by the second 
crystal B will converge to the point P, giving a point image of the point 
source S. Shenfil, Danielson, and DuMond [229] have studied in detail 
the geometry of this system for the case of an extended source of X-rays. 
They showed that for a given position of the crystals there was only a 
small part of the area of the source from which the Koc radiation could 
be twice reflected. The experimental results have confirmed the geo­
metrical predictions, and the authors have found a focus of dimensions 
0.19 mm. X 1.41 mm. for a focusing distance of the order of 65 cm. 
The optimum settings for the two crystals can be found only by means of 
a systematic application of numerous adjustments; without such an 
approach, no results can be obtained. 

An important factor for such a system is the beam intensity remaining 
after this double diffraction. A primary cause of loss of intensity is the 
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polarization of the beam upon diffraction. If the Bragg angle for the 
crystals were 45°, there would be complete polarization of the beam after 
the first diffraction, and the intensity diffracted by the second crystal 
would be zero. It is thus necessary to use planes affording small Bragg 
angles. The first tests of this system were made with quartz crystals, 

~ I ~_:-=~-----.J 
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Gas-f1 lled cathode stop 
X-ray tube monitor 

Fig. 33. Sketch of a high-intensity small-angle diffraction unit for long 
wavelength X-rays. A large solid angle of X-ray beam is totally reflected 
and focused to a point by an ellipsoidal mirror of ground and polished 
Pyrex. Reflection angles are very nearly equal to the critical angle 
of reflection for the desired line radiation, so that all harder background 

radiation is essentially cut off. (Henke and DuMond [76"''].) 

using the (310) planes with a Bragg angle of 40°. The final beam intensity 
was so weak that only samples that scattered strongly could be studied. 
The authors have suggested the use of topaz rather than quartz crystals, 
predicting an intensity increase of a factor of 4.8. A consideration of the 
long path length of the beam brought out the advantage of placing the 
apparatus in a vacuum or a helium atmosphere; the gain from this 
modification would be a factor of 3.5. Also the use of an X-ray source 
with a smaller angle of emergence from the target surface would permit 
a further increase in intensity. When all these factors are considered, the 
authors believe that a total intensity gain of the order of a factor of 40 
over the first system can be obtained. Such an arrangement, associated 
with either a powerful X-ray tube or one with a fine focus, would then be 
capable of producing adequate scattered intensities. 

The use of the two monochromators obviously gives this system the 
same advantages (accuracy of beam definition, absence of parasitic 
scattering) as those of the system in which the two crystals are arranged 
with parallel axes of bending. 

Another point-focusing system has been developed by Furnas [ 437), 
in which transmission by a mica crystal is used after the first reflecting 
quartz crystal; the principle of the technique is the same as that developed 
by DuMond. 

Let us also mention again the system of Henke and DuMond [76"") 
which uses total reflection from a mirror having the shape of an ellipsoid 
of revolution (Fig. 33). A ring-shaped screen placed after the mirror 
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stops the direct radiation and allows only the reflected rays to reach the 
point P. 

Even if we could succeed in producing a beam that converged strictly 
to a point, there would still remain one source of error, resulting from the 
examination of the films with a microphotometer. Ge,ierally the 
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Fig. 34. A double plane crystal spectrometer for small-angle 
diffre.ctiQil measurements. 

exploring slit of this apparatus has a height of the order of 1 mm., and 
this height will introduce an error in the measurements at very small 
angles. 

3.3.3.5. Double Monochromator with Plane Crystals 

This system, proposed first by Fankuchen and Jellinek [212] and used 
by Kaesberg, Beeman, and Ritland [221], is employed for quite different 
purposes than those of the system with two bent crystals. Interest is 
centered not on suppressing the parasitic scattering as much as possible but 
rather on recording the crystalline reflections due to very large lattice 
spacings. 

The apparatus, shown in Fig. 34, may be described as a double crystal 
spectrometer, with the crystals set in the parallel position.1 The two 
crystals are very good specimens of cleaved calcite, and the goniometers 
are constructed with sufficient precision to permit. the determination of 
orientations to within seconds of arc. The detector, a Geiger-Muller 
counter, is placed after the second crystal. The first crystal is held fixed, 
and the intensity is measured as a function of the angle of rotation of the 
second crystal. In the absence of a sample, a plot of this intensity 
distribution gives a curve known as a "rocking curve," whose width is a 
measure of the perfection of the crystal. Neither the spectral width of 
the radiation nor the width of the slits affects the shape of this curve. 

1 The theory of the double crystal spectrometer can be found treated in detail in 
X·Rays in Theory and Experiment, by Compton and Allison (1935). 



110 SMALL-ANGLE SCATTERING OF X-RAYS 

The scattering by a sample is determined by performing the same 
operation with the sample placed between the two crystals. The intensity 
measured in excess of the normal rocking curve when the second crystal 
makes an angle, e, with the first then represents the intensity scattered by 
the sample through this angle. Since the width of the rocking curve of 
good calcite crystals does not exceed 10", diffraction lines corresponding to 
lattice spacings of 20,000 A can be resolved from the direct beam. The 
angular uncertainty of the pattern, in the sense in which this has pre­
viously been defined (p. 87), can thus be 20 times as small as that of other 
systems. It must be pointed out, however, that this double crystal 
spectrometer functions schematically as a system of two slits of 
infinite height. There is therefore a very important inaccuracy due to 
the slit height at very small angles just as in the other systems employing 
slits, except for samples so oriented as to give a diffraction pattern con­
sisting of parallel lines. Also there is no arrangement for suppressing the 
parasitic scattering arising principally from the second crystal. This is the 
source of the very strong small-angle parasitic scattering shown in the 
curves published by Kaesberg and his collaborators, and others. This 
system is not adapted to the study of weak, continuous scattering, but it is the 
best for the study of crystalline diffraction arising from very large lattice 
spacings. 

Let us mention also a somewhat similar system devised by Banerjee 
and Maitra [2], in which a single plane crystal is used, the first crystal of 
Fig. 34 being replaced by a simple slit collimator whose width determines 
the accuracy that can be attained. For a given setting of the CTystal two 
lines are found in the plane of observation: one corresponds to the 
characteristic Koc radiation scattered by the sample through an angle E 

and then reflected by the crystal, and the other corresponds to a radiation 
of unknown wavelength from the continuous spectrum which has 
traversed the sample without deviation and has then been reflected by the 
crystal (Laue reflection). The position of this second line determines the 
orientation of the crystal and thus the angle of scattering, e, of the first 
line. Since the intensity of a wavelength of the characteristic spectrum is 
not very great, the intensity of the Laue line will be of the same order of 
magnitude as that of the characteristic radiation scattered by the 
sample. 

3.3.4. MEASUREMENT OF mE TOTAL SCATTERED INTENSITY 

Another use of the double crystal spectrometer has been suggested by 
Warren [174]. The total energy scattered at small angles by a sample is 
determined by comparing the energies received by the counter when the 
sample is placed between the two crystals (position 1) and when it is 
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placed just in front of the counter (position 2). In this second position 
the scattered rays enter the counter, whereas in the first position they are 
eliminated by the second crystal. Exploitation of this unique measure­
ment is possible by means of supplementary hypotheses concerning the 
form of the particles in the sample, by neglecting all interparticle inter­
ferences, and by assuming that when the sample is in position 1 the 
fraction of scattered energy superposed upon the transmitted beam and 
reflected by the second crystal is small. Warren has shown that, if the 
sample is assumed to be constituted of spheres of radius r, the difference 
between the mass absorption coefficients of the sample in positions 1 
and 2, µ8 .A., is proportional tor. The numerical relation was shown to be 

where A. and r are expressed in angstroms and p is the density of the sample. 
The measurements cited by Warren for a carbon black give a value of r 
in good accord with that deduced from an analysis of the low-angle 
continuous scattering curve. 

If the assumption of spherical particles is not made, the measurement 
of the total scattered energy can still be used by means of equations 2.30 
and 2.110. 

3.4. METHODS OF CORRECTION OF EXPERIMENTAL 
SCATTERING CURVES 

We have already emphasized that the inaccuracy produced by the 
dimensions of the direct beam increases as the center of the pattern is 
approached. This is particularly serious in a study of continuous 
scattering, where there is need for the entire curve of the intensity and 
not simply the positions of the maxima, as is the situation in studies of 
diffraction lines or spots. The errors are due to the width and the height 
of the direct beam. We have seen that the bent crystal monochromator 
with its convergent beam allows a reduction of the error due to the beam 
width without diminishing the beam intensity. It is not actually possible, 
in the absence of point monochromators, to avoid the error due to the 
beam height. Instead of trying to reduce this error at the price of a very 
great loss in intensity, methods of correction to determine the real curve 
from the measured curve have been sought. Such methods exist for the 
correction of errors due both to the width and to the height of the beam, 
but, because of the persistence of the slit height error noted above, it is 
particularly the latter correction that is important. 

The cross section of the direct beam in the plane of observation is 
shown in Fig. 35a. Let the intensity of the direct beam at the point 
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P(x, y) be denoted by i(x, y) dx dy. In order to simplify the notation 
for the following calculations, we have adopted as coordinates of P 

x = (2TT0Pz)/s). 

y = (21TOP~)fs). 

where s is the sample-to-film distance. 

y 

dx 
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Fig. 35. Calculation of the effect of beam dimensions. 

x 

Radiation scattered from this part of the direct beam to the point of 
observation, M, will be scattered by the sample through an angle equal, 

as a first approximation, to 20(x, y) = PM/s, so that the parameter h 

has the value h(x, y) = (2TTPM)/s} .. 
We shall assume that the scattered intensity depends only on the 

scattering angle, this dependence being expressed by the function l(h). 

The point of observation Mis defined by the parameter h.u = (21TOM)/s)., 
and the observed intensity at this point is 

J(h) = ff i(x, y)I(h(x, y)) dx dy 

The problem is to deduce l(h) from the measured valuesJ(h). 

3.4.1. CORRECTION FOR THE EFFECT OF BEAM WIDTH 

We shall consider a beam of rectangular cross section in which the 
distribution of intensity along the vertical direction is similar for all 
values of the horizontal coordinate, that is, i(x, y) can be written 
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LetJ1(h) be the scattered intensity that would be obtained at a point 
a distance (hls)/27T along the x-axis from an infinitely narrow incident 
beam containing the same power as the real direct beam, the intensity 
distribution of this incident beam in the vertical direction being pro­
portional to i 2(y). Let i1.0(x) dx be the fraction of the total power of the 
real direct beam striking the plane of observation between the abscissae, 
x and x + dx; that is, 

. i 1(x) 
ii.o(x) = J i1 (x) dx 

The contribution of this elementary direct beam to the observed scattered 
intens!ty at Mis i1.0(x)J1(h - x) dx. Therefore 

J(h) = f i1.0(x)J1(h - x) dx (8) 

An integral equation of this form can be solved by means of Fourier 
transforms. We shall assume that J(h), J 1(h), and i1.0(x) are even 
functions. Their transforms are then defined by the following equations: 

J*(u) = f 0

00 
J(h) cos 27ThU dh 

Jl *(u) = f_"""" Jl(h) COS 27ThU dh 

i* 1.0(u) = f _: i1.0(x) cos 211xu dx 

One can show that equation 8 can be transformed to the following 
equation: 

(9) 

The correction is found by calculating the transforms of the two known 
functions,J(h) and i1.0(x), and in forming their quotient. The transform 
of this quotient will be the desired function, J 1 (h). 

Let us point out thatJ(h) and i1.0(x) are measured by means of a counter 
or microphotometer and are not known precisely because of the finite 
width of the exploring slits. But, if the same slit is used to explore the 
direct beam and the scattered intensity, equation 9 is still correct, since 
an application of the same process shows that the effects due to the 
"slit transmission" function disappear. 

Theoretically one can thus correct exactly for the effect of the width 
by this process, regardless of the magnitude of this width. Actually we 
find in practice that the mathematical operations for calculating the 
transforms give precise results only on condition that the function i1•0(x) 
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is zero outside of an interval which is small with respect to that in which 
f(h) undergoes notable variations. If, for example, the width of a 
continually decreasing central scattering were not much larger than that 
of the direct beam, the transform of i1.0(x) would have zeroes in the 
region in whichf1(h) is to be calculated, which would lead to a very poor 
determination of f 1(h). For the same reasons it is necessary that the 
exploring slit used to determine i1.0(x) be small with respect to the width 
of the direct beam (less than 10 or 20 per cent). 

3.4.2. CORRECTION FOR THE EFFECT OF BEAM HEIGHT 

After the correction for the beam width has been made, we must 
correct for the effect due to a beam which is infinitely narrow but has a 
cl•rtain height along the y-axis. Let M again be the point of observation 
(Fig. 35b), and let the position of the point R in the direct beam be 

designated by the coordinate y = (2TTOR)/s).. The fraction of the total 
beam power contained in the segment of dimension dy, at the ordinate y, 
will be denoted by i2,0(Y) dy, where 

. i2(y) 
i2.o(Y) = Ji2(Y) dy 

If /(h) is the true scattering distribution (i.e., that obtained with a 
direct beam of infinitely small radius passing through 0), the observed 
intensity at the point M is 

f1(hl = Ji2.o(y)J(Vh2 + y2J dy (10) 
where 

h = (2TTOM)/s). 

A very important fact must be pointed out here: when the true 
scattering distribution is represented by a Gaussian curve, the observed 
curve is proportionaltotherealcurve. This is easily seen, forif /(h) = Ae-.t"l•' 

f 1(h) = [f2.0(y)e-k'u' dy] Ae-k'h' =constant X I(h) (11) 

If the beam height is large and the intensity of the beam is a constant 
c, independent of y, equation 11 becomes 

(lla) 

This demonstrates that the proportionality factor between the measured 
and true intensity distributions depends on the coefficient in the exponent. 
This fact, first pointed out by Hosemann [79], is of considerable interest, 
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since an exponential distribution is often a good approximation of the 
curves of low-angle scattering. 

Shull and Roess [155] have pointed out a possible extension of this 
remark. If the experimental curve is not sufficiently well represented 
by an exponential function, one can try to separate it into a series of 
exponentials. Thus, if the measured intensity can be written as 

$ 1(h) = 2,T;e-klh1 

i 

the transform of l(h) will be the sum of the transforms of the component 
exponentials. The expression for the true intensity distribution will 
then be 

where 

l(h) = J. T/e-k/h• 
i 

I ki 
T• = y1; Ti 

This method is not generally usable, since not only is the separation 
of an arbitrary function into a series of exponentials sometimes impossible,1 

but also, even when it is possible, a general method for performing the 
separation is lacking. 

When the equation of the scattering curve for an incident beam of 
point-like cross section is known, the scattering curve obsenred for a beam 
of infinite height can always be calculated by means of equation 10. 
This was illustrated for an exponential scattering curve in equation 11. 
Several other such results are found useful: 

(i) If the asymptotic shape of the intensity curve is of the form of 
Kh- 4 (equations 2.26 and 2.108), the observed curve varies asymptotically 
as h-3 . This is seen from the following: 

IC() 1 

J1(h) = K -co (h2 + y2)2dy 

By making the substitution y = h tan ex 

2K f"'2 dcx 
..?i(h) = h3 Jo -(I_+_t_a_n_2_cx_)_2 -co_s_2_:i: 

2K f"'2 7TK 
= h3 Jo cos2 a da = 2h3 (llb) 

or 

1 The group of functions e -k/h' does not form an orthogonal group. 
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(ii) In equations 2.28 and 2.111 the integral i 00h2/(h) dh appears. In 

terms of the observed intensity, this should be replaced by the integral 

Ii"' - h.F1(h) dh. This can be shown as follows: 
2 0 

["' h.F1(h) dh = ["' f 00 hl(vh2 + y2) dh dy Jo Jo -oo 

By making the change of variables y = z sin ct and h = z cos ct so 
that 

y2 + h,2 = z2 and dh dy = z dz dct 

["' h.F1(h) dh = f 00 f "'2 I(z)z2 cos ct dz drr.. Jo Jo -,,,/2 

= 2 L 00 z2I(z) dz (Ile) 

In the same way it can be seen that 

(lld) 

These results are valid only if the beam can be considered as infinitely 
high even for the most distant parts of the curve. 

(iii) Schmidt, Kaesberg, and Beeman (1954) have calculated numerically 
the scattering curve observed for spherical particles in a dilute system 
when the incident beam is of infinite height. (The scattering for an 
incident beam of point-like cross section is given by equation 2.31.) 

3.4.2.1. Slit Correction for Infinite Height 

A rigorous method of correction for this case has been described by 
DuMond [209] and by Guinier and Fournet [216), [217). It is rigorous 
only for the particular case in which the beam is of uniform intensity and 
infinite height. However, if the low-angle scattering decreases con­
tinuously from the center, this method can be applied if the beam intensity 
i 2(y), is constant up to a value of y such that .F1(y) is negligible. If the 
pattern consists of one ring of scattering, the beam must have a height 
at least equal to the diameter of the ring for this method to be applicable. 

The true intensity distribution is determined by the following equation: 

1 i"" .F1'(Vh2 + u 2) du I(h) = - -
1TC O yh,2 + u2 

(12) 
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where c designates the constant value of i2.0(y}, 

.f1'(vh2 + u2) = d.f1(V~) 
d(vh2 + u2) 
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and u represents a variable of integration of no physical significance. 
The derivation of this equation may be outlined as follows: 

Equation 10 can be written 118 

J.fh) = 2ci 
00
J(Vh• + y•) dy 

Differentiation with respect to h gives the following: 

.f1'(h) = 2c J'( V h' + y 1 ) • I dy ioo h 

0 v h' + y• 

Dividing by h and then changing the variable h' into h' + u• gives 

.f1 '(Vh1 + u') i"" l'(Vh' + u• + y•) 
--~~~=2c dy 

Vh'+u• o Vh'+u•+y• 

Integrating with respect to u 

i
"" .f1'(Vh' + u') iooioo l'(Vh' + u' + y') 
--===~ du = 2c du dy 

o v'h• + u' o o Vh' + u• + y• 

A second change of variables, u = r cos 0, y = r sin 0, then gives 

i oo .f1'(Vh' + u") i"'2i"" l'(Vh' + r') ---====-- du = 2c I r I dr dO 
o v'h• + u• o o Vh' + r• 

= C7r[J(Vh2 + r')]F-+OO = -CWJ(h) 
r=O 

on condition that l(h) approaches zero as h approaches infinity, which is true for 
scattering experiments at very small angles. 

The use of equation 12 requires the determination of the derivative of 
the experimentally determined function 5 1(h). Then, for each value of 

h f ..1'i'(Vh2 + u 2) • t d d hi l . t t' . , a curve o is race an a grap ca m egra 10n is 
vh2 + u 2 

performed. The process is tedious, but it can be precise, as has been 
verified by Guinier and Fournet [217]. 

When the function.f1(h) differs only slightly from a Gaussian function, 
the calculation may be shortened considerably by writing 

(13) 

where T, k, and f(h) are determined by means of an auxiliary graph of 
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log.f1(h) as a function of h2• Application of equation 12 to equation 13 
then gives 

I Tk -k'h' 1 f"' f'(Vh2 + u2) 
(h) = ---= e - - du 

cV7T 7TC o Vh2 + u 2 

This approach leads to a. much greater accuracy in the determination of 
the function l(h). 

3.4.2.2. Case of a Beam of Arbitrary Height 

If i 2(y) depends on y and, in particular, if the beam is of finite height 
(for example, i 2(y) is a constant between -y0 and Yo and is zero outside of 
this interval), the property discussed above of curves of the form e _.,..,,. is 
still valid. For this type of curve the measured distribution can be used 
directly, whatever the intensity distribution of the direct beam, if only 
the shape of the curve is important. If absolute measurements of 
intensity must be made, equa1rion 11 must be employed to determine the 
proportionality factor. 

The general problem of the arbitrary curve that cannot be resolved 
into a sum of exponentials remains to be considered. The solution we shall 
outline here was pointed out by Kratky, Porod, and Kahovec [111]. 

The equation to be solved is 

(10) 

in which i2.0(Y) is some arbitrary function of y. Porod has shown that 
the solution for this general equation, a relation analogous to equation 12 
but containing another function, g(u), is 

/(h) = - ~ f "'.f1~Yh2 + u2) g(u) du 
1TC Jo Jt2 + u2 

(12a) 

The function g(u) is determined by the following condition: on making 
the change of variables u = r cos() and y = r sin 0, the integral 
("'2 
Jo i2.0(r sin O)g(r cos 0) d() should be a constant, i.e., independent of r. 

If i 2•0 is a constant, g(u) is a constant, and equation l2a reduces correctly 
to equation 12. 

The authors did not indicate a method, even numerical, for determining 
g(u) in the general case. 

When the beam is of uniform intensity and limited to the interval 
between -y0 and y0 , these authors indicated a solution which, though 
not rigorous, should certainly be a good approximation. An exact 
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solution of the function g(u) was determined for values of u less than 

Yo v2. For large values of u they found that the function tended towards 
the value g(u) = u/y0 , oscillating about this quantity. For their applica­
tion they adopted the following values: 

g(u) = 1 

g(u) = 2 

u 
g(u) = -

Yo 

u <Yo 

Yo :S: u < YoV2 

u > y0v2 
In practice, the method of application of this correction is the following: 

the function 

.f '(vh2 + u2) 
F(u) = - 1---­

yh2 + u2 

is constructed as in the previous case for an infinite slit. The integration 
is more complicated because of the presence of the function g(u). First 
the integration of the function F(u) is performed over value's of u ranging 
from 0 to y0• To this is added twice the value of the integration over 

values of u ranging from Yo to Yo v2. The final contribution is that given 
by the integral of the product (u/y0 )F(u) over values of u ranging from 

y0v2 to infinity. Kratky and Porod have shown that this last contri­
bution is given by the ordinate of the experimental curve at an abscissa 

of Vh 2 + 2y0 2 . Tests by the authors of this method have shown that 
the accuracy obtained is of the same order as that found in the correction 
for beams of infinite height by means of equation 12. 

It is not yet possible to say that definite, complete solutions exist 
for the problem of correction for the height of the incident beam. Thus 
in practice one should either employ very high beams of uniform intensity 
and make an important, but calculable, correction, or else diminish the 
height of the beam as much as possible to diminish the error. We believe 
that this last solution is to be recommended, provided that the study is 
not extended to very small angles. 

Actually, if the correction is small, an approximate method pointed out 
both by Fournet and Guinier [216] and by Franklin [214] can be used. 
The beam is assumed to be of uniform intensity, c, and limited to values 
of y between -y0 and y 0 . The function I(h) is expanded in terms of 
.f1(h) and its derivatives, the first terms being 

d: l (y0) 2 d11(h) 1 (y0) 4 [ d.f1(h) 2 d2Y 1 (h)] 2cy l(h)=.r (h)-- - h---- - h---h --
0 1 6 h dh 360 h dh dh2 
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This method still requires the determination of the slopes of the experi­
mental curve, but these enter only in the corrective terms. 

The above relation can be \I-Tit.ten, to a slightly poorer approximation, as 

2cy0l(h) =f1 (J h2 - ~~:) 

3.5. CONSTRUCTION OF LOW-ANGLE SCATTERING SYSTEMS 

Systems employing collimators or monochromators have been built 
following the principles given in the preceding sections, and detailed 
descriptions of the different pieces of equipment used can be found in the 
references given in the general bibliography. Our discussion here will be 
limited to indicating the difficulties generally encountered and the 
solutions that have been proposed. 

3.5.1. SLIT CONSTRUCTION 

In systems employing either collimators or monochromators, slits play 
an essential :r:ole in defining the beam and in eliminating the parasitic 
scattering. These must be very carefully made, and, in the majority of 
cases, their edges should be independently adjustable to a precision of 
approximately 0.01 mm. Finally,. they should be designed so as to 
produce the least possible parasitic scattering when they are touched by 
the direct beam. 

Kratky et al. [111] have pointed out the existence of a particular small­
angle scattering effect arising from the slits which may be described as 
follows: when the volume of matter bathed by the X-rays is rather small, 
as the result of a high absorption coefficient or of the form of the slit edge, 
a small-angle scattering is created, with the irradiated volume playing the 
role of the scattering particle. 

In order to limit the extent of this scattering, the volume effectively 
bathed by the direct beam must be increased. This can be done by 
causing the slit to have sharply angled edges made of a substance of low 
atomic weight. However, if the slit edges are very thin and not very 
absorbing, the beam is not sharply defined. The best method is to define 
the beam precisely with slits formed of steel cylinders with diameters of 
2 to 3 mm., for example, and to place a third slit after the first two whose 
function is to intercept the parasitic scattering. The usable region in the 
plane of observation is then the part protected by the third slit. This 
third slit in particular should be very carefully made so that its edges can 
be independently positioned about 0.01 mm. away from the main beam. 

The only important slit in a system that employs a monochromator is 
the one that stops the parasitic scattering but does not touch the main 
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beam. The nature of the edges of this slit is not important, but their 
construction should be very precise. 

The ll.djustment of the slits cannot be made visually by means of a. 
fluorescent screen, since in general the luminosity of the pattern is 
insufficient to allow the necessary accuracy to be obtained. The beam 
form may be recorded photographically, successive exposures determining 
whether the edges of the slit to be adjusted are touching the beam. If a 
Geiger-Muller counter is to be used, the power of the direct beam may be 
measured and each of the edges advanced in turn until the measured 
power begins to diminish. 

3.5.2. STOPPING THE DIRECT BEAM 

It is essential to prevent the direct beam from striking the photo­
graphic film. It is necessary also that the device used to stop the direct 
beam does not itself produce scattering. A final requirement of the beam 
stop is that it should not mask the film in its useful region, that is, outside 
the zone fogged by parasitic scattering. The construction of a beam stop 
that will satisfy these conditions is made difficult by the fineness of the 
direct beam. The most common device is a fl.at band of metal placed 
several millimeters from the film. The width of the band is made slightly 
larger than the beam width, yet slightly smaller than the width of the 
fogged zone (the quantities a and b, respectively, of §3.2.1), as is shown in 
Fig. 36a. 

It is advantageous to use a rather thin band, so that in the course of the 
normal exposure the trace of the direct beam will appear on the film with 
a blackening comparable to that of the scattered radiation. By this 
means a positioning mark is always available. If the direct beam is mono­
chromatized there is a much more important point of interest to the trace 
of the direct beam, which is that its intensity is proportional to the 
intensity of the incident beam. This fact allows the measurements of 
the scattered intensity to be made in absolute units (see §3.5.3). 

With a Geiger counter detector, the slit before the counter plays the 
role of the beam stop. It should therefore be thick enough to stop the 
radiation completely and constructed in such a way as to prevent any rays 
scattered by the slit from entering the counter (Fig. 36b). 

3.5.3. ABSOLUTE MEASUREMENTS 

The difficulty in absolute measurements arises from the great difference 
in magnitude between the intensity of the direct beam and that of the 
scattered radiation. Such measurements obviously are worth while only 
when the direct beam is strictly monochromatic. 

If the primary intensity is reduced by an absorber, one essential 
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precaution should be observed. In general a monochromator crystal 
reflects not only the useful wavelength but also the harmonies of wave­
lengths J./2, J./3, etc. If the absorbing band has a much smaller coefficient 
of absorption for the wavelength A/2 than for A, the trace of the direct 
beam contains the radiation A/2 in a considerable proportion and thus 

~-- . I 
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Sample 
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Fig. 36. Beam stops; (a) usual device with photographic detection; 
(b) arrangement for counter measurements; (c) arrangement proposed 

by Kratky. 

does not give correct information on the intensity of the primary radiation 
of wavelength A. This source of error can be avoided by choosing for the 
absorbing band a substance having a coefficient of absorption for J./2 at 
least as large as that for ). as a result of its K absorption discontinuity. 
The proportion of J./2 in the trace is then equal to or less than its pro­
portion in the direct beam. For example, copper or nickel serve well for 
Cu Kl'J. radiation and silver serves for Mo Kl'J.. The beam stops in our 
present system are made from copper sheets of 0.20- to 0.25-mm. thickness. 
This reduces the Cu Kr1.. direct beam in a ratio of 1.2 X 10-4 to 1.2 X 10-5• 

The error due to the J./3 radiation is not suppressed, but in general this is 
unimportant since the proportion of A/3 in the primary beam is very small. 

An inaccuracy in the process of normalization to absolute units that 
requires the measurement of the total power of the direct beam arises from 
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the fact that the coefficient of absorption is never known to a high enough 
accuracy to permit a sufficiently sure determination of the weakening of 
the direct beam. 

Kratky and coworkers [111] have developed a very ingenious method 
for reducing the intensity of the direct beam to a quantity measurable by 
photographic techniques. They use an X-ray tube powered by unrectified 
high voltage. The image of the direct beam is received on a photographic 
plate which is moved in the plane of observation at such a speed that the 
traces due to successive emissions are resolved. Then by microphoto­
metering one such trace the incident energy can be evaluated for a.n 
exposure time of 1/50 second (for 50-cycle current); this is 1/180,000 of 
the normal exposure time of 1 hour generally necessary for a scattering 
pattern. In order that the measurement furnish the correct factor, the 
X-ray tube power must be kept constant. It is not necessary that the 
displacement of the plate be at constant velocity, so this motion can be 
provided simply by hand. 

Geiger counters cannot measure intensity ratios in excess of 1000 
because of counter saturation at high intensities. Therefore, if a counter 
is to be used for absolute measurements, we must either reduce the 
intensity of the direct beam by absorption or else measure the scattering 
from a sample whose scattering power is known (an ideal gas [53] or some 
light material whose high-angle scattering is essentially free from inter­
atomic interferences). 

Ionization chambers were generally discarded when Geiger counters 
were developed because electrometer measurements were much more 
difficult than the counting of impulses. These chambers, however, 
have a big advantage in that precise and direct absolute measurements can 
be made, for if a sufficiently high collection voltage (800 volts) is used there 
is no recombination of ions in the chamber, and the charge collected by 
the central electrode per unit time is proportional to the X-ray flux, even 
for very intense beams. Laval (1939) and his coworkers (Olmer (1948); 
Curien (1952)) measured the ionization current by compensating the 
collected charges with charges induced on the chamber itself (capacity y) 
for low beam intensities and with tJharges induced across a condenser of 
capacity C for high intensities (Fig. 37). The sensitivity of the chamber is 
reduced by the ratio of the capacities y/C in the latter case, and this 
ratio can be measured very accurately. 

3.5.4. VACUUM APPARATUS 

It is essential to eliminate air scattering in small-angle scattering 
experiments, since this scattering can very often be stronger than the 
intensity scattered by the sample. The best method for eliminating it 
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is to include all the apparatus between the tube and the detector either in 
an evacuated chamber [ 48] or, if this is not possible, in an enclosure filled 
with hydrogen or helium (Fig. 25b) [376], which scatters only weakly. If 
such a large vacuum chamber cannot be used, a system must be employed 
in which the air is eliminated in that part of the beam path between the 
sample and the film or counter. 

Ionization 
chamber 

2v. 
Fig. 37. Ionization chamber circuit for absolute measurements of 
the scattered intensity. For low intensities switches 1 and 2 are closed 
and 3 and 4 are open. For high intensities switches 1 and 2 are open 
and 3 and 4 are closed. The electrometer E is maintained at its zero 
by adjusting the potentiometer P. If an adjustment of n divisions is 
required in time t, the ionization current is given by (n/t)y or (n/t)O for 
the low- and high-intensity settings, respectively (Curien (1952)). 

Kratky [lll] proposed the following system to simplify the apparatus. 
The beam stop is moved to a distance s' from the film, as is shown in 
Fig. 36c, thus suppressing the path of the direct beam in air in the regions 
closest to' the plane of observation. These regions are the most harmful, 
since the scattered intensity measured at a point varies inversely as the 
square of the distance from the scatterer. 

To find the order of magnitude of the improvement, let us consider a 
slit collimator for which the fogged region has a width b twice that of the 
direct beam, a. Here the beam stop can be placed at a point approxi­
mately one-third of the distance from the film to the sample without 
screening a part of the useful region. With the beam stop against the 
film, the scattering from the air traversed by the direct beam between the 
sample and the film that is received at a point a distance l from the direct 
beam trace will be proportional to the integral 

r· dx 
Jo x2 + l 2 
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With the arrangement proposed by Kratky, the scattering will be pro­
portional to 

I.• dx 

•/3 x2 + z2 

The gain by this arrangement, proportional to s/l, is approximately a 
factor of 20 at an angle 20 = 1°. The method is thus simple and efficient 
for very small angles. 

REFERENCES FOR CHAPTER 3 

Arndt, U. W., Coates, W. A., and Riley, D. P. (1953), Proc. Phys. Soc. (London), 
66, 1009. 

Cauchois, Y., Tiedema, T. J., and Burgers, W. G. (1950), Acta Cryst., 3, 372. 
Compton, A. H., and Allison, S. K. (1935), X-Rays in Theory and Experiment, 

Macmillan, New York. 
Curien, H. (1952), Bull. soc.jraw;. mineral. et crist., '!5, 197. 
DuMond, J. W. M. (1947), Rev. Sci. Instr., 18, 617. 
Evans, R. C., Hirsch, P. B., and Kellar, J. N. (1948), Acta 01'yst., 1, 124. 
Fankuchen, I. (1937), Nature, 139, 193. 
Guinier, A. (1946), Cornpt. nnd., 223, 161. 
Guinier, A. (1952) (Ed., W. Shockley), Imperfections in Nearly Pef'ject Crystals, 

Wiley, New York, p. 402. 
Johann, H. H. (1931), Z. Physik, 69, 185. 
Johansson, T. (1933), Z. Physik, 83, 507. 
Kirkpatrick, P. (1939), Rev. Sci. Instr., 10, 186. 
Laval, J. (1939), Bull. soc. /ran~. mineral. et crist., 62, 137. 
Lipson, H., Nelson, J.B., and Riley, D. P. (1945), J. Sci. Instr., 22, 184. 
Olmer, P. (1948), Bull. soc.jran~. mineral. et crist., 71, 144. 
Schmidt, P., Kaesberg, P., and Beeman, W. W. (1954) Biochim. et Biophys. Acta, 

U, l. 
Wilsdorf, H. (1948), Naturwiss., 35, 313. 



4. METHODS OF INTERPRETATION 
OF EXPERIMENTAL RESULTS 

In Chapter 2 the small-angle scattering effects were calculated for 
scattering bodies of given structure. Then in Chapter 3 we reviewed the 
experimental methods and equipment that are actually employed. Now 
we can approach the real problem, which is the determination of the 
structure of the scatterer from the patterns of the small-angle scattering by 
means of the theories developed in Chapter 2. We shall examine 
successively the different cases that were considered in that chapter: 
widely separated identical particles, closer-packed identical particles, 
groups of particles of different sizes, etc. Then, from what is known of 
any scattering body, we can determine in advance of an investigation the 
particular case out of those enumerated into which it must fall. We 
shall also give the criteria of validity of the hypotheses which are adopted. 

4.1. IDENTICAL PARTICLES 

Let us begin with the simple case of widely separated particles. 

4.1.1. WIDELY SEPARATED, IDENTICAL PARTICLES 
4.1.t.l. Equal Probability of All Orientations 

We have seen (equation 2.55) that the scattered intensity is given by 

F 2(h), apart from a multiplicative constant. Consequently, we can 
write 

log /(h) =log F 2(h) + constant 

The approximate law of Guinier (equation 2.39) 
111Re1 

F 2(h) = F 2(0)e - - 3-

can be written as 
-- h2Ro2 

log10 F 2(h) = - - 3- log10 e + constant 

Therefore 
- h2R2 

log10 /(h) = - ~log 10e +constant 

(1) 

(2) 

(3) 

(4) 

The method of analysis is thus simple; the curve of log /(h) vs. h2 

(hereafter denoted by log J(h2)) is plotted, and from its slope the radius 
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of gyration is determined. In the experimental systems generally used 
the parameter which is most easily obtained directly is the tangent of the 
scattering angle 20 (tan 20 = x/s, where x represents the distance from 
the trace of the direct beam to the point on the film being considered, 
and s is the sample-to-film distance). In the small-angle region we are 
considering, an angle, its sine, and its tangent can be interchanged 
without error. Therefore 

sin 0 27T 
h = 4rr-y ~ 'T tan 20 

and 
- 411'2 

log10 /(h) =-(tan 20)2 322 R 02 log10 e + constant (5) 

The slope, -p, of the representative curve of log /(h) as a function of 
(tan 20)2 is thus equal to -(47T2/3A. 2)R02 log10 e. Therefore 

I J 3 Ro=- --A.Vp 
27T log10 e 

(6) 

For example, with Cu Koc radiation (A. = l.540 A) 

R0 = 0.645Vp (Angstroms) (7) 
If, instead of using the approximate law of Guinier, we use the exact 

formula for the structure factor, 

- -[ h2R 2 ] 
F2(h) = F 2(0) I - T + och4 + · · · (8) 

we find 
- h2R 2 

log10 I(h) = - --0 log10 e + fJh"' + · · · + constant (9) 
3 

From this we can see that, rigorously speaking, the slope p that should 
be used in equation 6 is not the average slope of the curve of log I(h2) but 
rather the value of the slope at the origin, that is, the slope of the curve 
at h = 0. 

We know (cf. Chapter 3) that measurements of the scattered intensity 
cannot be accurately made below an angle O' which is very small but not 
zero (this corresponds to the value h' for the parameter h). Therefore an 
experiment cannot give directly the slope that is required. However, 
the slope at the origin is the limiting value of the slopes for different 
values of h 2 as h2 tends to zero, so that, if measurements are made of the 
slope -p(h2) of the curve log J(h2) at several points, the limiting value, 
-p(O), can be determined by means of an auxiliary graph. This extra­
polation is very precise if the experimental curve shows only a small 
curvature over a relatively large part of the small-angle region. 



128 SMALL-ANGLE SCATTERING OF X-RAYS 

For a particle of given form and radius of gyration R0 there is a limiting 
value, h" R 0 , of the product hR 0 beyond which it is evident that the approxi­
mate law of Guinier is no longer valid. This is illustrated by the graphs 
of log J(h2R 02) for a sphere (Fig. 38) and for a homogeneous, one­
dimensional rod (Fig. 39), in which the clotted lines represent the extra­
polations of the slope at the origin. For the spherical particle the 

log I 

0 

-1 

-2 

1.69 2 3 4 5 (hR0)2 

Fig. 38. Log I vs. (hR 0 ) 2 for spherical particles. 

Guinier formula is a very good approximation at small angles, remaining 
valid up to the limit, h" R 0 = 1.3. For the rod the Guinier formula is not 
as good an approximation. It is precisely for particles of this rod-like 
shape that the difference between the approximate law and the exact 
expression is greatest; here h" R0 is only of the order of 0.7. If we assume 
that the slope of the curve at h' will correctly determine the radius of 
gyration if h' :S:: h" /2, we can conclude that an experimental system 
characterized by a lower angular limit, h', will be capable of correctly 
measuring the radius of gyration of spherical particles up to an upper 
limiting radius of 0.65/h' A, whereas for rod-like particles the limiting 
radius will be only 0.35/h' A. Actually it is possible to extend this limit 
somewhat. Instead of simply tracing the curve of log J(h2), we can 
plot the curve of the slope, -p(h 2 ), and extrapolate to the origin, h 2 = 0. 
This method of extrapolation is illustrated in Fig. 40 for the unfavorable 
ease of a homogeneous one-dimensional rocl in a system such that h' R 0 

= 1.04. The value of -p(O) obtained by extrapolation, 0.0492, is very 
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log I 

0 

-1 

-2 

0.49 2 3 4 5 

Fig. 39. Log I vs. (hR0 )1 for homogeneous one-dimensional rods. 

0.050 

1 Limit of the experiments 

0.040 

0.030 

0.020 

0.010 

2 3 (hRof 

Fig. 40. Graph of the slope -p(h1 ) of log J(h1 ) as a function of (hB0 )1 • 

The slope -p(O) is found by extrapolation. 
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nearly the correct value, 0.0483, even though the value of h' R 0 is con­
siderably larger tha.n h" R 0 = 0. 7. 

Within the limits just defined, it is always easy to determine the radius 
of gyration of the particles being examined. The radius of gyration is the 
only precise parameter which can be determined by small-angle sr,attering 
experiments without invoking supplementary hypotheses. It is evident that 
this one para.meter does not entirely define the particle. The curves of 
log J(h2) for particles having the same radius of gyration but different 
forms will have the same slope at the origin and will coincide so long as 
h < h", but beyond this point they will diverge. The use of the entire 
curve ii). the determination of the form of the particle is very difficult in 
practice, since rather large changes in the form of the particles produce 
only small effects on the shape of the tail of the scattering curves. 
Theoretically, we could trace a priori a family of curves of log I as a 
function of log h for different forms of the particles by means of the 
equations established in §2.1, and then, neglecting simple translations, 
determine which of the different curves most closely corresponds to the 
experimental curve as plotted in the same coordinates. 

Let us, however, cite a rather remarkable exception. The experi­
mental curve for very homogeneous spherical particles can be made to 
coincide with the theoretical curve <l> 2(hR) (see equation 2.31) over a very 
large region; in fact, the successive maxima predicted by theory have been 
experimentally demonstrated ([186], [25], [76'"']) (Fig. 41). This last 
result proved tha.t the form of the particles was spherical a.nd allowed the 
determination of the radius of the particle. This radius agreed well with 
that calculated from only the very low-angle part of the curve by means of 
equation 6. 

In the general case, once the radius of gyration is determined, further 
details about the form of the particle can be obtained either by employing 
auxiliary information or else by making certain hypotheses. For ex­
ample, if the volume and the general form of the particle are known, its 
dimensions can be calculated. 

As a particular example, let us consider the study of horse hemoglobin 
given by Fournet [48). The particles, which can be assumed to be mole­
cules, were found to have a radius of gyration equal to 23 A. The 
molecular weight of this substance is 66, 700, and the density of its 
solution in water is 1.33 (Perutz (1946)). This auxiliary information 
determined the volume of each molecule as 83,400 A3 . 

If we assume that the molecule has the form of a right cylinder of 
radius R and height 2H, two relations between R and H can be deter­
mined: the volume of the molecule is V = 2TTR2H = 83,400 A3, and the 
square of the radius of gyration is R 2 = (R2/2) + (H2/3) = (23)2. 
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1.0mm. 

Fig. 41. Scattering pattern of uniform spherical particles (Dow 
Latex) obtained with a point-focusing monochromator (Fig. 32). 
The first visible ring is the fifth maximum (Fig. 6); on the original film, 
the rings are visible up to the seventeenth maximum. Sample-to-film 
distance: 66 cm_ Cu Koc radiation. Exposure time: 129 hours. 

(Danielson, Shenfil, and DuMond [251.) 
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These relations can be expressed as two curves in the R-H plane (Fig. 42) 
whose intersections define the dimensions of the only possible cylinders 
which can fit all our information. Figure 42 shows that there are two 
possibilities: (a) 2R = 42 A, 2H = 120 A; (b) 2R = 60 A, 2H = 30 A. 
This last size is very close to that proposed by Perutz [407], which was 
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Fig. 42. A graphical approach in the study of the form of particles. 
The full line curves correspond to cylinders of radius R and height 2H 
and the dotted curves to ellipsoids of axes 2R, 2R, 2H. This figure 
shows the information that can be determined from a knowledge of the 

radius of gyration and the volume of a particle. 

2R = 57 A, 2H = 34 A. Actually these dimensions will not be sharply 
defined but will rather be described as zones of possibilities with widths 
dependent upon the errors in the molecular weight and the radius of 
gyration. 

Similarly, if we assume that the molecule has the form of an ellipsoid of 
revolution, two relations can be defined between the half axes, Rand H. 
The curves of these relations will again lead to two zones of possibilities 
centered on the intersections of the curves (see Fig. 42). This graphical 
method of solution is of interest because by its use we can see directly the 
consequences of a modification of the data on the form and dimensions of 
the particle. 

We have just seen that it is advantageous to know the volume of the 
particle in order to obtain more detailed information from its radius of 
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gyration. It is possible to determine this volume ifthe intensity measure­
ments are made in absolute units. We know that the zero-angle 
scattered intensity, J(O), obtained by an extrapolation of the curve of 
log J(h2), is given as 

1(0) = J 0 (0)Nn2 (10) 

This expression signifies that /(0), expressed in electron units, is equal to 

the product of the average number of particles N and the square of the 
number of electrons in each particle, n 2• The total number of electrons 

in the scattering body, Nn, can be determined from a knowledge of the 
mass of the sample that is active in scattering and the chemical composition 
of the scatterer. Therefore the measurement of J(O) in electron units 
enables us to determine the number of electrons in each particle, n 

= Nn2/Nn, and from this we can deduce not only the mass of ea.ch 
particle but also its volume, if its density is known. The application of 
this method requires several precautions: 

(a) We have assumed that there is negligible absorption of the X-rays 
in the sample, and, if this condition is not satisfied, the necessary cor­
rection must be made. 

(b) In the case of solutions of large particles, the number of electrons 
per particle, n, to be considered is, to a. first approximation, the difference 
between the number of electrons effectively contained in a. particle and 
the number of electrons contained in the same volume of the solvent. 

Results obtained with the methods described in this section (§4.1.1.1) 
will be correct only if the hypotheses we have imposed are satisfied. 
The relative interparticle distances can in general be checked easily if the 
density of the sample and the density of matter in the particle are known. 
It is more difficult to be sure of the uniformity of the particles. A 
definite criterion cannot be found in the X-ray data alone. Nevertheless 
it can be said that, if the curve of log J(h2) maintains its linearity over a. 
large pa.rt of the small-angle region, it is probable that there is not a very 
great variation in the sizes of the particles. More precisely, such a. 
linearity means that the sample does not contain a notable proportion of 
particles having a radius of gyration ktrger than that determined from the 
linear part of the curve, for the presence of such particles produces a 
curvature in the curve at very small angles; on the other hand, very small 
particles can be present. A bending of the curve of log J(h2) with 
increasing angle cannot be interpreted unambiguously, for this may be 
due either to the particular shape of supposedly identical particles or 
to the presence of smaller particles mixed in with those larger ones which 
primarily determine the initial linear part of the curve (see, for example, 
p. 151). 
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4.1.1.2. Identical Particles with a Definite Orientation 

Any particle of this system can be derived from any other one by 
means of a translation. The characteristic of the resulting pattern is 
that there is no longer circular symmetry around the incident beam. In 
the general case it is therefore necessary to use a beam of very small 
height, since the methods of correction for beam height effects described in 
§3.4.2 are valid only if the intensity of scattered radiation depends solely 
on the scattering angle, 20. 

Let us assume, then, that the beam cross section is as nearly like a point 
as possible. The curves of scattered intensity as a function of angle are 
determined for different azimuths about s0 (Fig. 3, p. 13). From §2.1.5 
(equation 2.44), the approximate exponential function describing the 
intensity scattered for an orientation defined by the vector 10 is 

J(h) = n2Ne-1i'D'<lo> (11) 

Measurements for each orientation of 10 then lead to the determination 
of an average inertial distance of the particle with respect to the plane 
11(10) that is perpendicular to 10 and passes through the center of gravity 
of the particle. Let us point out that this equation differs from the 
approximate law of Guinier in that there is no coefficient, 1/3, in the 
exponent. 

The determination of inertial distances for different orientations gives 
a rather precise idea of the form of the particle. This is the principal 
advantage of the study of oriented particles as compared to the study of 
particles without definite orientation. 

It is obviously advantageous to direct the incident beam along one of 
the principal axes of the particle. Let us take as an example an ellipsoid 
of revolution of axes a, a, and va. We shall direct the incident X-ray 
beam normal to the unequal axis. The small-angle scattering spot will 
then have the form of an ellipse. The variation of intensity with angle 
is (equation 2.44) e-aY.11•15 in the direction parallel to the unequal axis, 
and e-a•h•/5 in the perpendicular direction. Thus two experimental 
measurements have determined the parameters a and v which define the 
ellipsoid. 

It can be said quite generally, by means of equation 2.44, that the 
small-angle scattering spot will be elongated in the direction of the 
minimum dimension of the particle. An ellipsoid or an elongated rod 
gives a spot elongated in the direction perpendicular to the long axis. A 
plate-like particle gives a spot elongated in the direction perpendicular to 
the plane of the platelet. Thus the general aspect alone of the pattern 
furnishes qualitative information about the general f~rm and orientations 
of the particles. 
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If the particles are so elongated that one of their dimensions exceeds 
the upper limit that can be measured by the equipment, the scattering 
spot appears as a narrow streak whose width is a function only of the 
dimensions of the incident beam, and no quantitative information about 
this long particle dimension can be obtained from the pattern. In this 
case, in studying the distribution of intensity along the streak an incident 
beam of large height may equally well be used. 

4.1.2. DENSE GROUPS OF IDENTICAL PARTICLES 
4.1.2.1. Analysis of the Scattering Curve 

It has been recognized since the first studies of small-angle scattering 
that quite often the particles cannot be considered as being widely 
separated. This is true when the graph of the intensity has such a form 
that it is evident that the exponential law is no longer a valid approxi­
mation. If the interparticle interferences cannot be neglected, the 
applicability of the results of the methods we have previously described 
must certainly be doubted. 

This is the reason why it is very important to study the influence of the 
drawing together of particles on the scattering. In §2.2 we discussed the 
solutions that had been given for this difficult problem, but no solution, 
even approximate, has been advanced which has not required several 
restrictive hypotheses. These hypotheses were that the particles are 
identical and either that they are spherically symmetric or that their 
orientations are in no way dependent on the separation of their centers. 

Equation 2.68, the fundamental relation for the scattering by spherically 
symmetrical particles (see §2.2.3.2), gives the observed intensity /(h) as 

(2.68) 

where v1, the volume offered to each particle, is equal to V0/N0 • The 
constant € can be taken as unity (see p. 44). The interparticle inter­
ferences which modify the curve of F 2(h) are taken into account in the 
function /J(h). The first task in the interpretation of the experimental 
curves is to obtain the function F 2(h) from the measured function l(h), 
which takes us back to the problem we have just discussed. If the 
concentration of the particles is not too high, the function {J(h) only 
slightly modifies the curve of F 2(h). We can again trace the usual curve 
of log /(h2) and verify that it still has a linear portion at small angles. 
By applying equation 6 to this linear part we can determine an apparent 
radius of gyration, R0A; this is not the true radius of gyration, R0 , which 
would be found from the curve of log F 2(h) as a function of h 2• A simple 
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mathematical manipulation of equation 2.68 leads to the following 
relation (Fournet [ 48]): 

R 2 - R 2 - ~ {J"(O) 
OA - o 2v1(211)-3/2_{J(0) 

(12) 

R0 A obviously approaches R0 as the average volume v1 increases, that is, 
as the concentration decreases. Furthermore, other experimental results 
(the decrease of the intensity J(O) with increasing concentration), 

log I 

h2 

Fig. 43. Log I vs. hi for spherical particles packed together 
in increasing concentrations. 

together with certain theoretical considerations (the theory of lyophobic 
colloids given by Verwey and Overbeck (1945)), have shown that, if 
equations 2.67 and 2.68, deduced from the theory of Born and Green, are 
to be used, it is necessary to adopt a function, {J(h), which is negative for 
small values of h. Now, when I {J(h) I is a maximum at h = 0, fJ"(O) is of 
the opposite sign to that of fJ(O), so that in our case {J"(O) must be positive. 
Therefore R0 A is less than R 0 and becomes even smaller, the greater the 
concentration of particles. 

As an illustration of this, let us consider the model studied earlier 
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(§2.2.3.4, equation 2.75), which is composed of a group of hard spheres 
showing no interactions other than impenetrability. We have reproduced 
in Fig. 43 the curves oflog J(h2) for three values of the ratio (8v0t:/v1) : 0.00, 
0.25, and 0.50. These curves verify not only that the slope at the origin 
varies with concentration in the manner we have indicated but also that 
the curves depart more and more from linearity as the concentration 
increases. 

log I 

Fig. 44. Log I vs. h2 for a 9.8 per cent solution of horse hemoglobin. 

This is just the aspect Fournet has pointed out on some real experi­
mental curves. The curve of log /(h2) (Fig. 44) is a straight line for very 
small concentrations (5 and 10 per cent), whereas for higher concentrations 
the curves, after an initial straight-line portion at small values of h, drop 
below the extrapolated straight line. 

Summarizing the foregoing discussion, the method to employ to be 
sure of avoiding all error is the following: After having determined a 
radius of gyration from particles in a solution, repeat the experiment 
with a more dilute solution and compare the two results. If, within the 
limits of experimental error, the results are the same, the measurement is 
correct. If they are different, then by making several measurements on 
samples of decreasing concentration, the radius of gyration can be deter. 
mined by an extrapolation to zero concentration. 

If the concentration is high, the curve of F 2(h) is so deformed that it is 
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no longer useful to try to employ the log J(h2) representation. Let us 
now show how it is possible to obtain the curve corresponding to an 
infinitely dilute solution, F 2(h), by means of the curves of I(h) for several 
different concentrations, even though these concentrations are all rather 
high. In addition, the function {J(h) will also be determined. 

Let x be the weight percentage of particles in the solution; d(x), the 
density of the solution at x per cent concentration; and m, the mass of one 
particle. The volume per particle, v1(x), is then 

1 lOOm 
v1(x)= =--

X d(x) xd(x) (13) 

100 m 

Equation 2.68 shows that there will be certain points, defined by {J(h) = 0, 
which will be common to all curves of the function 

(14) 

It is difficult in general to determine accurately the absolute value of 
I(h), so that the functions f(x, h) will probably be known only to within 
some multiplicative constant. In such a circumstance we can select 
a priO'l'i some point to be the common point and then try to verify whether 
the normalized curves reproduce the different characteristics of the 
function 

(15) 

Let us give as an example the scattering curves for human hemoglobin 
(Fournet [48]) (Fig. 45) which have been normalized to a common point 
at a scattering angle of 2.4 X 10-2 radian. The behavior of the functions 
is in good agreement with the predictions that can be made from equation 
2.68: as the concentration increas{ls, the intensity curves become more 
uneven; at a certain concentration (in this case, 32 per cent) a maximum 
appears, and this maximum becomes more accentuated and shifts to 
larger angles as the concentration further increases. 

Let us emphasize that, if the experiments are not capable of accurately 
evaluating the ratio of the intensities scattered by solutions of different 
concentrations, it is still possible in general to determine whether the 
experimental facts can be interpreted by means of equation 2.68. A 
common point, chosen a priori, is imposed on the several curves. An 
examination of these normalized curves then shows whether or not the 
curve corresponding to a concentration of x per cent is always contained 
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between the curves for x + dx per cent and x - dx per <.>ent as is pre­
dicted by the theory. By successive approximations we can see whether 
it is possible to find a common point, defined by an angle k,_, for which 
these conditions will be satisfied by all the experimental curves. 

I 

x=10% 

1 • Angle 

2)(10-2 3 >< 10-2 radian 

Fig. 45. Experimental scattering curves of Bolutions of human 
hemoglobin of different concentrations. 

When this common point can be determined, each normalized curve 
represents a curve of the function/(x, h), apart from an arbitrary constant 
the same for each curve; this function is 

F 2(h) 
f(x, h) = 1 - (211)312 £,8(h)[v1(x)]-l (l5a) 

Then by use of equation 13, which describes the dependence of the mean 
volume, v1(x), on the concentration, x, we find 

1 1 - (211)312 £{J(h)x d(x)J0-2m-1 

f(x, h) F2(h) 

1 - kx d(x),B(h) 

F 2(h) 
(16) 

For each value of h, the curve of/-1(x, h) as a function of x starts from 
a value of l/F2(h) at x = 0 and increases in an approximately linear 
manner. The slope of this curve as a function of x is 

-k/3(h)F-2(h){d(x) + xd'(x)} (17) 

and, since d(x) is in general a function which increases with x, the slope 
then increases in absolute value as x increases. 
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If the curves of this function are taken from the curves of Fig. 45, in 
which h1 ~2.4 X 10-2 radian, the behavior wehavepredicted will be found. 

If the common point of the curves represented in Fig. 45 had been taken 
as an angle smaller than 2.4 X 10-2 radian (2.2 x 10-2 radian, for 
example), the general appearance of the curves of f(x, h) would still be 
satisfying, though less so, but the same cannot be said for the curves of 
J-1(x, h). For a value of h equal to 1.5 X 10-2, the extrapolation of the 
curve of J-1(x, h) gives a negative value for this function at the origin, 
x = 0, which is physically impossible. This example shows that the 
general appearance of the family of curves ofj(x, h) as a function of his 
less sensitive than that of the curves of J-1(x, h) as a function of x in 
determining whether the common point has been well chosen. 

The representation of J-1(x, h) as a function of xis of further interest, 
in that the Junction F 2(h) is determined by the reciprocal of the ordinate at 
x = 0. We must admit that experimentally the plots of these curves 
will not be very meaningful unless the experimental results are known to a 
high degree of precision. This requires that a very careful study be made 
of a large number of solutions. Naturally, accurate measurements, such 
as are possible with Geiger-Miiller counter detectors, are indispensable. 

The function {J(h) can also be determined from the same curves by use of 
equation 16. Now {J(h) is related to <l>(r) by the equation 

1 Jco - <l>(r) 
h{J(h) =. 1_ r{e kT - I} sin hr dr 

v 27T - co 

Therefore theoretically we can obtain the potential energy, <l>(r), of the 
interaction between particles. Small-angle scattering experiments are thus 
capable of giving not only the size of the particles but also the law of their 
interaction. This method, which is complex, to be sure, but legitimate, 
as is shown by the calculations of Chapter 2, has not yet been exploited as 
thoroughly as it should have been. 

So far we have considered only spherically symmetrical particles. It 
is not impossible to treat the case of particles of arbitrary shape if we 
assume that their relative orientations are independent of their spatial 
distribution. The formulas are very complex, and the indispensable 
hypothesis is quite hard to justify in numerous cases. In addition, there 
are only a very few applications of such a treatment. Therefore it will not 
be developed here. 

4.1.2.2. Interpretation of a Maximum in a Scattering Curve 

Disregarding these complex but accurate methods, many authors have 
been content to use a more simple interpretation of the results of experi­
ments made on dense systems of particles, taking account only of the 



INTERPRETATION OF RESULTS 141 

position of the maximum or bump on the scattering curve. This pro­
cedure should be closely examined, since evidently it is not established on 
a rigorous basis. It is only a rough approximation from which erroneous 
conclusions can be drawn if the procedure is given more worth than it 
actually deserves. 

In ·order to simplify th~ notation in this section we shall consider only 
spherically symmetrical particles, but it is easy to extend the discussion 
to all cases for which there is complete independence between the 
orientations of the arbitrarily shaped particles and the distances between 

their centers. For spherically symmetrical particles F2(h) and F(h)2 are 
identical, and the scattered intensity can be written in the form 

I(h) = I.(h)N F 2(h)a(h) (18) 

The product Na(h) is equal to the intensity in electron units which would 

be scattered by N electrons, each positioned at the center of one of the N 
irradiated particles. The function a(h) depends markedly on the con­
centration of the particles, so we shall denote the function by a(h, c) or 
a(h, v1 ). For example, the function a(h, v1) for the system described by 
equation 2.68 is 

a(h V) - Vi 
' I - ,v1 - (21T)312 e{J(h) 

(19) 

The angular positions of the maxima of the function a(h) will be denoted 
by h1, h2, • • • h1 (or 01, 02, • • • 81), and those for the function J(h) by 
hM, hN, ... (or ()M, ()N, .. ·). 

We shall now give the different possible interpretations. 

4.1.2.2.1. Interpretation in Terms of an Average Distance 

The presence of a maximum or even a singularity such as a bump in the 
scattering curve has often been interpreted as showing the existence of an 
"average distance frequently realized between neighboring particles." 

First let us observe that it is impossible to define the concept of neigh­
boring particles in a substance which has no long-range order, except in the 
very particular case of a linear model. This concept of an "average 
distance," which seems simple and natural and which has so often been 
employed, is in reality never defined in a precise manner. 

Let us now look at the arguments which have been advanced by those 
who employ this idea (for example, Mattoon, Stearns, and Harkins [366]). 

The formula that is most often cited is that due to Ehrenfest (1915): 

(20) 
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Actually this formula describes the scattering angle 20 111, for the maximum 
in the intensity scattered by a group of widely separated particles, when 
each particle, having the form of a dumbbell composed of two points 

separated by a distance d, takes all possible orientations with equal 
probability.1 The Ehrenfest rel,ation therefore cannot be used to interpret 

0 5 10 hd 

Fig. 46. A graph of~ (I + sinhd hd) cll1 ( ~·) for varioug ratios of d0/d. 
The maximum and minimum of the curve, shown joined by the dotted 

line, disappear for d 0/d > 0.52. 

the structure of any fluid. In order to give every possible opportunity to 
those who would employ this challenged formula, let us 'iUake the 
assumption-which cannot be even a rough first approximation-that 
the intensity scattered by a fluid composed of spheres of diameter d0 is 
proportional to the intensity scattered by a pair of these spheres separated 

by the distance J, and then calculate this intensity. This is found to be 

( sin hd) (hd ) /(h) = constant I + hd <I>2 </ (21) 

In Fig. 46 we have given the normalized curves of this function for 

1 The intensity scattered by such a system is proportional to ( 1 + si~ hd) (Fig. 

46), the position of the first maximum being given by equation 20. 
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different values of the ratio d0/d, d being kept constant. The curve for 
d0 = 0 corresponds to the case described by the Ehrenfest relation. As 

the ratio d0/d increases, there is a limiting value beyond which the intensity 
I(k) becomes a function that decreases continuously with increasing 
angle. Now experiments have shown that the observation of a maximum 
is more probable, the higher the concentration of matter, which for our 

model means a greater ratio of d0/d. But it is precisely for these con­
ditions that equation 21 that supposedly relates the position of a mazimum 
to an average distance will not allow a maximum to appear. This 
internal contradiction thus gives a second reason for abandoning this 
usage of the Ehrenfest equation. 

It is still possible to introduce an average distance into the inter­
pretation of the presence of a maximum by considering a model in which 
the centers of the particles are arranged on a more or less distorted face. 
centered cubic lattice. In such a face-centered cubic paracrystal, as it 
has been called by Hosemann, each molecule is surrounded by 12 neighbors 
which are clearly closer than all other molecules, but the distance from the 
origin molecule to these 12 neighbors varies from one to the next, 

fluctuating about a mean distance d. In this model it is possible to 
define a mean distance of approach which naturally will be larger than the 
diameter of a molecule. The cell edge of a cubic pa.racrystal is equal to 

dV2'. The scattering angle 281 'for the first maximum of the function 
a(k), that due to (111) planes, is then determined by Bragg's law to be 

2dv2 
;. = 2<411 sin 81 = v3 sin 81 

or 

- J3 2d sin 81 = 2 ). = 1.22). (22a) 

Hosemann has shown that the function a(k) shows maxima not only at 
the angle 01 but also at angles 02, 03 , etc., corresponding to planes in the 
average lattice of higher indices. The angles for these maxima are 
similarly defined: 

2d sin 82 = v2;. = l.4U 

2d sin 03 = 2). = 2.00.A. 

(22b) 

(22c) 

etc. However, these maxima are broader and weaker, the higher the 
corresponding index and the more distorted the latticet so that it is 
poBBible that only the first two or three can be observed. 
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This model imposes a certain relation between sin 81 and the volume 
concentration, c (the ratio of the volume of the particles to the total 
volume of the system). The maximum value of this volume concentration 
for spherical particles is 0.74. We can thus write that 

c/0.74 = (d0/d)3 (23) 

where d0 is the diameter of the sphere. This relation can be transformed to 
the following: 

Equation 22a then can take the form 

1.22.I. 1.35.I. 
--- c1i3(0.74)-113 = --- c113 = d0 =constant (24) 
2 sin 81 2 sin 81 

We see thus that the sin 8; are proportional to c1 i3• 

This paracrystalline model leads to the prediction of several marked 
maxima in the function a(h). The value of sin 8; for each maximum 
varies in proportion to the one-third power of the volume concentration. 

Patterns that agree with all these results have been only rarely 
observed (a good application of this model is that of Bernal and Fankuchen 
[402]), but nevertheless a method of interpretation based on this model 
has often been employed where the experiment did not show definitely 
that the paracrystalline model was a good approximation. For example, 
this method was applied by Riley and Oster [371] to the results for 
solutions of human hemoglobin obtained by Riley and Herbert [486]. 
These scattering curves showed only one slightly marked maximum (two 
maxima were observed at the highest concentration only). Since the 
maxima of l(h) were very broad, a similar breadth must exist for the 
maxima of the function a(h). We have already explained in §2.2.3.4 
that in a circumstance like this one the intervention of the factor F 2(h) 
will make the positions 8 M of the maxima of l(h) very different from the 
positions 8; of the maxinia of a(h) (cf. Fig. 13). Therefore conclusions 
that are valid for the latter maxima, as drawn from equations 22 and 24, 
cannot be applied to the intensity maxima. The c113 dependence has 
almost never been validly observed (Philippoff [369]). Riley and Oster 
have observed that the position of the first maximum obeys a relation of 
the form 

sin OM= kMc113 

If one is to satisfy both equation 25 and the relation 

sin 81 = k1c113 

(25) 

(26) 
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very special conditions must be imposed on the functions Fll(h) and 
a(h), so we can say that in general equation 26 cannot be satisfied if the 
experimental results obey equation 25. An entirely different inter­
pretation of equation 26 will be given in §4.1.2.2.4. 

Finally, let us point out that the proposed model requires that, when 
the concentration changes, the same type of short-range order continues 
to exist while the interparticle distance varies. This would probably 
require that the interaction potential change with dilution, a mechanism 
which does not seem very probable. 

We have just discussed the attempts at interpretation of real solutions, 
isotropic in three dimensions, in terms of an average distance. We could 
give an analogous discussion for cylindrically symmetrical systems. The 
values of sin (}i would then vary as c112 if a quasi-crystalline model were 
adopted. This is the experimental relation that was observed by Bernal 
and Fankuchen [402]. 

4.1.l.l.l. Interpretation in Terms of an Average Volume 

In order to escape the criticisms based on the impossibility of defining 
an average distance, we can try to interpret the presence of a maximum 
in the scattering curve in terms of the existence of a certain average 
volume v1 defined as the ratio of the total volume offered to the particles, 
V 0, to the number of particles, N 0• Equations 2.67 and 2.68 show that 
this is not possible; f3(h) plays just as essential a role as does v1 , for it is 
the ratio of f3(h) to v1 which appears. For example, let us consider two 
identical enclosures of volume V 0, one containing N 0 argon atoms and 
the other containing N 0 non-interacting hard spheres, whose volumes 
can be chosen equal to those of the argon atoms. These two groups of 
particles characterized by the same average volume v1 give very different 
scattering patterns, as is shown by a comparison of their functions {J(h) 
given in Fig. 19. By generalizing this remark we can say: 

1. Although the average volume per particle may be the same in several 
groups of particles, nevertheless the statistical arrangement of the par­
ticles may be quite different in the different groups, since this depends 
on the function <l>(r). 

2. The scattering of X-rays, through the intermediary of the function 
P(r), is very sensitive to these differences. 

An example of this can be found by a comparison of the behavior of a. 
solution of tobacco virus, which demonstrates the presence of order for 
very small values of the ratio v0/v1 (Bernal and Fankuchen [402]), with 
the behavior of an ordinary solution of a protein (hemoglobin, for example). 
Thus the interpretations that depend on the intervention of the volume 
v1 cannot be justified. 
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4.1.2.2.3. Interpretation by Means of an Interparticle Interference 
Function 

Oster and Riley [128] have proposed to get information from the 
scattering curves of solutions of proteins by means of a function, a(h), 
obtained from the experimental study of liquid mercury. Equations 
2.67 and 2.68 show that a(h) depends only on the ratio {J(h)/v1, where the 
function {J(h) is determined by means of a Fourier transformation of a 
term involving <l>(r) (see equation 2.65). Each type of particle has its 
own potential <l>(r) and, consequently, an individual function {J(h). Thus 
a method of interpretation employing a given a(h)-type function cannot 
be generally correct. This method could be used nevertheless as a first 
approximation when the particles being examined are somewhat analogous 
to the particles from which the a(h) function is determined. However, 
it is not at all obvious that the data from mercury are valid for proteins. 
A further criticism of this particular comparison follows from the use of 
liquid mercury, since it is known that certain properties of solutions of 
large molecules (for example, osmotic pressure) can be likened to the 
properties of gases but not to those of liquids. 

4.1.2.2.4. Predictions of the Correct Theory 

We would like now to summarize the facts that can be predicted about 
the angular position of a possible intensity maximum from the two types 
of equations we have discussed in §2.2.3. 

The "geometrical" equation for spherically symmetrical particles, 

- { li"' sinhr } l(h) = I,(h)N F 2(h) 1 - - [l - P(r)] -- 47rr2 dr 
Vl 0 hr 

shows that the position of a possible maximum of l(h) depends primarily 
on two factors: 

1. The function P(r). The value of the integral for a certain value, 
h0, of the parameter h depends on all the values of the function P(r) 
and not simply on the value P(r0 ) corresponding to a certain distance, 
r 0• Thus there cannot be a law relating a value r1, corresponding to the 
first maximum of the function P(r), to the value h1 at which the integral 
presents its minimum value. The function P(r) must be known over its 
entire range in order to calculate hl' 

2. The structure factor F(h) and thus the internal structure of the 
particle. This factor, though often neglected, can be important. In 
most cases F 2(h) decreases with increasing angle, so that the maximum 
intensity occurs at a value of h smaller than h1. Moreover, all other 
characteristics being equal, the maxima will appear at smaller angles and 
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to a lesser degree (even disappearing), the less compact the distribution 
of scattering centers in the interior of a particle. 

We see therefore that in the general case it is difficult to define the relation 
between the existence of an intensity maximum and the structure of the group 
of particles being examined, so that it is especially necessary to abandon the 
idea that the intensity of radiation scattered through a certain angle contaiM 
specific information about a certain interparticle distance (as, for example, 
the probability of the existence of this distance). 

The "thermodynamical" relation for spherically symmetrical particles 
(Fournet [ 48]) 

- 1 
/(h) = I.(h)N F2(h) (27r)S/2E{J(h) 

1-----
"1 

shows that the maximum of a(h, v1) is always produced at the same 
angle h1, regardless of the concentration of particles in the sample. The 
influence of the concentration is felt uniquely in the steepness of the 
variations of a(h) as a function of h (Fig. 13). The intensity, /(h), 
determined by the product of a(h) and F 2(h), begins to show a maximum 
when the concentration reaches a rather high value. This maximum is 
situated at an angle smaller than h1. As the concentration increases, 
the curve of a(h) becomes sharper, and the position of the maximum 
moves towards hi· The maximum in l(h) shifts towards larger anglea as 
the concentration increases. This behavior is illustrated by the curves of 

Fig. 13. These were constructed with a function F 2(h) which followed 
the law of Guinier and a function {J(h) chosen so that the observed maxi­
mum obeyed the law found by Riley and Oster (equation 25). The 
behavior of this {J(h) is not at all improbable. 

Equation 2.67 is an approximate expression, but nevertheless we can 
still state rigorously that the displacement of /(h) is explained in large 
part by the mechanism we have indicated in §2.2.3.4 and is not due to a 
variation in the angular position of the maximum of a(h). Equation 
2.67 also shows that the primary factor which determines a(h) is the 

function {J(h). We have used this fact in our discussion in §4.1.2.2.2 and 
"1 

§4.1.2.2.3 (Fournet (1955)). 

4.1.2.3. Conclusions 

We have just demonstrated the complicated factors regulating the 
positions of the maxima of the scattered intensity. Let us now summarize 
the information of this section by considering the two following cases: 

1. The intensity maximum is not very sharp. This means that the 
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corresponding maximum of the function a(h) is also not very sharp, and 
consequently the constitution of the matter is quite different from that 
of a crystal. The theoretical calculation of the position h1 of the maximum 
of a(h) is then often difficult. The structure factor of the particle, F(h), 
will contribute strongly to the form of the curve of the intensity, I(h). 
The maximum of I (h) will be found at a position, h M• which is often quite 
different from h1 . No simple significance is attached to this one para­
meter, hM. Two procedures can be followed: 

If precise information is wanted, a complete study must be made of 
the family of curves of I(h) as a function of concentration and then an 
attempt must be made to compare this group of curves with theoretical 
results obtained from some suitable model. 

If only approximate information is wanted, we can simply apply Bragg's 
law to the diffuse peak and determine an order of magnitude (to within 30 
to 50 per cent) of some geometrical dimension characteristic of the matter 
being studied. It is impossible to determine the meaning of this geo­
metrical dimension by this one measurement (an example is shown in 
§6.4.3.l for Al-Ag alloys). 

2. The observed intensity maximum is sharp. Although it is not 
rigorous, we are probably justified in considering the sample being studied 
as a paracrystalline substance, and there will probably be a simple 
interpretation of the maxima of a(h). Since these maxima are very sharp, 
the factor F 2(h) will have very little influence on the positions of the 
intensity maxima (h M is almost exactly h1) and will affect only the 
magnitude of the intensity (see Fig. 14). 

This section has been deliberately developed at length in order to show 
clearly how easy it is to make rather serious errors in interpretation. 
The introduction of X-ray techniques into the studies of large molecules 
has not always succeeded in clarifying the ideas. This is due to the fact 
that the non-specialists in the scattering of X-rays have often been 
deceived by the dangerously precise results that have been published 
(certain authors have not hesitated to correct Bragg's law with a co­
efficient with three significant figures) and have thus by inference been 
able to obtain information (forms of particles, number of layers of water 
with which each is surrounded, etc.) which really has no serious justifica­
tion and which can be completely erroneous. It should always be 
remembered that Bragg's law, so familiar in crystallography, applies only 
to good crystals. 

4.2. GROUPS OF NON-IDENTICAL PARTICLES 

We shall now consider the case where it is not possible to assume that 
all the particles are identical. The theoretical calculations of §2.3 show 
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that there is only one case for which a useful result can be obtained­
particles separated far enough so that interparticle interferences a.re 
negligible. Let us state immediately that we cannot give a rigorous 
method of interpretation when the particles are of several types and are 
closely packed. Section 6.3 gives the uses that can be made of the 
experimental results by adoptihg an empirical point of view. 

4.2.1. DETERMINATION OF THE AVERAGE RADIUS OF GYRATION FOR 
THE GROUP OF PARTICLES 

The curve of log /(h2) is generally concave, with a positive second 
derivative. If it is found that at small angles the curvature diminishes 
enough so that the tangent at the origin can be determined with reasonable 
accuracy, by applying equation 6 to the slope of this tangent a mean 
radius of gyration R0M can be obtained. This parameter represents a. 
mean value defined by the following relation: 

LP.tR2okFA:2(0) LP.tn/·R2ok 
RI - I: I: (27) 

OM - LP.tFA:2(0) 2.P.tnk2 
k k 

where nk represents the number of electrons contained in the particle 
of type k and Pk represents the proportion of this type. 

Equation 27 can be simplified if it can be assumed that all the particles 
are geometrically similar, the number of electrons n11: being proportional 
to R3w With this assumption we find 

LJikR8ok 

R2oM = ;pkRSok (28) 
k 

It is easy to generalize these formulas for the case of a continuous 
distribution of particle sizes by first introducing a probability density 
function, p(R0 ), where p(R0 ) dR0 designates the probability that a 
particle has a radius of gyration contained between R0 and R 0 + dR0, 

and then replacing the summation by an integration. 
We can empley equally well a mass distribution function, m(R0), 

where m(R0 ) dR0 gives the total mass of particles whose radius of gyration 
is contained between R0 and R0 + dR0• With this approach we find 

R2 - f m(Ro)Ro5 dRo (29) 
oM - fm(Ro)Ro3 dRo 

These equations show that l.arge radii of gyration are favored in the 
e:eperimentally determined average. This fact can be illustrated rather 
easily by considering the very simple model composed of two different 
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2 3 4 hRo 
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Fig. 47. Scattered intensity for dilute systems of particles: 
(a} Identical particles of radius of gyration R 01 ; (b) identical particles 
of radius of gyration R 01 = 1/ 1R01 ; (c) a mixture of equal proportions 

of the particles of a and b. 

log l(h) 

0 

Slope corresponding to R01 

Slope corresponding to Ro2 

0 IO 

Fig. 48. Log I vs. h2R01 for a mixture of particles of radii of gyration 
R 01 and R 01, where R 01 = 1 / 1RD1' Same sample as for Fig. 47c. 
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types of particles (1 and 2) with R 01 greater than R 02• Figure 47 shows 
three scattering curves: curve a is that for particles 1 only, curve b is 
that for particles 2 only, and curve c is that for a mixture of 50 per cent 
of particles 1 and 50 per cent of particles 2 (by weight). At very small 
angles, the variation of the intensity for the mixture is almost entirely 
due to curve a, since curve b shows only a very slight variation in this 
region; thus large radii are favored in the experimentally measured 
radius of gyration. The influence of the small particles is only perceptible 
at larger angles, where the intensity scattered by the large particles is. 
practically reduced to zero. 

This example will also permit us to demonstrate another important 
aspect characteristic of mixtures. Let us assume that the structure 
factors of the different particles follow the law of Guinier exactly. At 
very small angles we have seen that the apparent radius of gyration is 
effectively R01 ; at larger angles (h1) the curve c is due almost entirely to 
curve b, since the contribution from curve a is effectively zero, and the 
apparent radius of gyration, as defined by the slope of log Ic(h 2) at h12, 

is practically equal to R02 • The curve of log Jc(h2) is thus characterized 
by a decided concavity, as is shown in Fig. 48. We may generalize this 
remark to say that the curve oflog J(h2) for a mixture will usually present 
such a concave appearance. Let us make quite clear that this is only a 
general observation and is not a proof of a one-to-one correspondence; 
for example, the curve of log I(h2) for a group of identical homogeneous 
rods demonstrates the same concavity. 

4.2.2. ATIEMPTS AT DETERMINING THE STATISTICAL DISTRIBUTION 
OF THE PARTICLES 

It is easy to calculate the intensity curve by means of equation 2.93, 

J(h) = I.(h)NJ..pkFk2(h) 
k 

if the distribution of particles is given, that is, if the form, the size, and the 
relative fraction Pk of the particles of each type are given. 

Conversely, several authors (Hosemann [79], [81]; Shull and Roess 
[155]) have tried to deduce the distribution of the particles from the 
experimental curve. But this problem does not have a unique solution. 
Hypotheses must be made, and the results depend on these hypotheses. 
Several of the methods that have been proposed will be discussed in this 
section. 

Hypotheses are not made on the form of the particles, but it is assumed 
that they are all geometrically similar, so that the number of electrons nk 

in a particle of type k, defined by a radius of gyration R0k, is proportional 

to Raok· 
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It is assumed that the particles of type k give a scattering curve 
represented by the exponential law, e-<h'R'o.>13• We have already 
discussed the validity of this (p. 26). This approximation must be valid 
for the largest particles of the group for all values of the parameter h at 
which the scattered intensity is important; if small particles are present 
this scattering will extend to large angles, and in this case the complete 
calculations are correct only if the shapes of the particles are such that the 
exponential relation is a very good approximation up to rather large 
values of hR0• 

Next it is assumed that the distribution of the radii of gyration of the 
particles is represented by a Maxwellian distribution of the form (Whit­
taker anil Watson (1927)) 

(30) 

where m(R0)dR0 represents the proportion of the particles whose radius 
of gyration is between R 0 and R 0 + dR0• By means of the two para­
meters, r 0 and n, we can satisfactorily describe a wide range of distributions. 
The arithmetic mean of the radii of gyration is given by 

r (~ + 1) 
RoJtI = ro (n 1) 

r - + -
2 2 

and the fractional standard deviation of this value, V t1R02/R0, is 

l/V2(n + lJ. 
The scattered intensity is given by equation 2.93 as proportional to 

the integral 

Ok 2 -3- dR I m(R ) _ h2R'ot 

-a- nk e Ok 
R Ok 

As a result of the form chosen for m(R0k) the integration can be carried 
out, giving 

constant 
l(h) = __ [_1 _+_(h-~0-)--2]_,..(n_,+-..,.4)"""/2 (31) 

The problem is now to determine r 0 and n in such a manner that this 
equation will suitably represent the experimental curve. 
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Several methods of calculation have been given. The method due to 
Hosemann is based on the use of a curve of h2I(h) as a function of h. This 
curve always presents a maximum at some position hM greater than zero. 
A second position, hT, is defined by the intersection with the h-axis of the 
tangent to the curve at the inflection point Won the high-angle side of the 
curve (Fig. 49). 

h2l(h) 

h 

Fig. 49. The Hosemann method for analyzing the intensity 
distribution from a mixture of particles rs41. 

Hosemann derived the following relation: 

hp 1 
2-h-M - 1 ~ V-;=2(=n=+=l) 

From this equation the parameter n can be determined. Then the 
arithmetic mean of the radii of gyration can be found by the relation 

( n + 2) 
1 6 2 J-r-

RoM = h M n + 2 r ( n ; l) 

The mathematical proof of these results, as drawn from equations 30 and 
31, will be found in an article by Hosemann [84].1 

In the method of Shull and Roess, equation 31 is first "\\Titten in the 
form 

n+4 ( 3) log I = constant - -- log h2 + 2 2 r 0 
(32) 

1 Hosemann considers systems of spheres instead of general particles defined by 
their radius of gyration. His formulas have been changed accordingly. 
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Then the experimental intensity curve is constructed with the coordinate 
system log I, log (h2 + oc), and a value of°' is sought for which the curve 
of log J(h2 + oc) is a straight line. Then the parameters, r 0 and n, are 
determined from this constant (r02 = 3/°') and from the slope of the line 
(slope = (n + 4)/2). 

One can also construct the family of curves of log I as a function of 
log (hr0) 2 for different values of n and then try to superpose the curve of 
log J(h2) on one of these. When this is done, the translation of the origin 
along the h-axis gives r0• 

It can be stated that, although it may be easy to determine the average 
dimension of the particles, it is difficult to select the form of the distri­
bution law, because the difference between theoretical curves for groups 
with the same average dimensions but with different distribution laws are 
very small (see Fig. 50). 

Roess and Shull [148] have made calculations for spherical particles 
and particles in the form of ellipsoids of revolution with a variable axial 
ratio, v, in which they employed the true structure factor instead of the 
exponential law. They obtained exact results by expressing them in 
terms of generalized hypergeometric functions. 'They were thus able to 
obtain a family of curves (Fig. 50) plotted with the coordinates log I and 
log a 2h2, in which each curve was defined by two parameters, n and v. 
The parameter v described the form of the particles; n, the statistical 
distribution; and a, the dimensions of the average particle. The 
important conclusions of this distinguished work are that there is little 
variation in the form of the curves and also that the same forms are found 
for different pairs of the parameters n and v. If then we consider the 
experimental uncertainty of measurements, particularly at high angles, it 
appears that it is difficult to choose from the family of curves that par­
ticular one which gives the best coincidence with the experimental curve. 
Therefore the parameter n and, consequently, the statistics of the distri­
bution are poorly determined. Again, very different values can be found, 
depending on the choice of v, that is, the form of the particle. This 
demonstrates the important limitations of low-angle scattering methods 
when the particles are not homogeneous. 

Let us now briefly mention other contributions to this subject. Shull 
and Roess have repeated their calculations using a "rectangular" 
distribution (uniform distribution between a minimum and a maximum 
size). It has also been shown (Riseman [145]) that, for a system of 
spherical particles, it is mathematically possible to determine the 
statistical distribution of sizes from the experimental curve without 
imposing a priori some form on this intensity curve. However, there 
seems to be little physical interest in such calculations. 
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Fig. 50. Calculated curves of I vs. (hR 0)1• (a} Maxwellian distri­
butions of spheres characterized by the pa.re.meter n; (b) Maxwellian 
distributions of oblate ellipsoids (axial ratio: v = 0.25). (Roess 

and Shull [148].) 
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4.2.3. DETERMINATION OF THE SPECIFIC SURFACE 

In the preceding sections we have tried to use the low-angle part of the 
scattering curve. But in systems composed of particles of various sizes, 
that low-angle part which can be represented by an exponential approxi­
mation is often inaccessible to experiment. Also, if the particles are 
packed together the low-angle part is perturbed by interference effects. 
It is therefore more advantageous under these conditions to exploit the 
other possible approximation, that for the tail of the scattering curves. It 
would undoubtedly be possible to determine the characteristic function 
y{r) { §2.4.3) from the experimental curve without making any hypotheses, 
for, mathematicaJly, ry{r) is the Fourier transform of hl(h). But 
in practice the function y{r) can be used to obtain one important 
quantity, the value of the specific surface of the specimen, and this is deter­
mined by the tail of the scattering curve. 

The fundamental equation, equation 2.108, is valid both for systems 
composed of arbitrary particles distributed in an arbitrary manner 
and for an arbitrary distribution of matter of constant density p. 

Th. . h h I. l aJ, h4/(h) is equation s ows t at, Jor arge v ues of h, the quantity -217-p-21-.-(h-) 

approaches the value of S, the total, free surface of the scattering body. If 
the scattering body has unit volume or unit mass, then S represents the 
specific surface per cubic centimeter or per gram of the sample. The 
method requires that the measurements of the scattered intensity be 
extended up to rather large angles, where the intensities are rather weak. 
That the product h4l(h) becomes constant must be verified. Finally, the 
intensity of the direct beam should be measured in order to obtain an 
absolute value for S. However, if samples of the same matter but of 
different structures are compared, then, by examining samples all of which 
have the same mass, the ratio of the products h4I(h) gives the ratio of the 
specific surfaces of the specimens. 

The assumption is made in these equations that the electronic density 
in the interior of the particles is rigorously constant, and this, by virtue of 
the atomic structure of matter, is never the case. This atomic structure 
gives rise to a high-angle scattering pattern such as that for an amorphous 
body, for example. The intensity to be expected from this effect in the 
low-angle scattering region is weak but not zero. It is negligible in the 
small-angle part of the region of scattering arising from the heterogeneity 
of the sample, but it can become perceptible towards the outer part of the 
curve, the part in which we are interested at this point. Other sources of 
extraneous radiation must also be added: fluorescence radiation, Compton 
scattering, thermal scattering by crysta.ls, various parasitic scatterings, 
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etc. The product h4/(h) thus will begin to increase when h becomes too 
large. The asymptotic law is also not valid for too small values of h. 
There is therefore only a certain range of validity, whose extent depends 
on the particular sample, in which this relation can be used in making 
measurements of specific surfaces. These measurements lmve significance 
only if it is verified tlmt the product h4I(h) remains constant over a reasonable 
interval. 

If the cross section of the incident beam is not pointlike but rather has a 
large height, then it is the product h3J1(h) which should be constant at 
large values of h (equation 3.llb). 

We can avoid the measurement of the intensity of the direct beam in 
determining the absolute value of the specific surface by making use of the 
normalization relation, equation 2.111. If Vis the total volume of the 
specimen and c is the fraction of this volume occupied by matter (of 
electronic density p), 

L'' h2J(h) dh = 21121.(h)pSVc(I - c) (33) 

Ifs.pis the specific surface per unit volume, then 8 = vs,p, and 

S _ lim [h41(k)] _ lim [h'l(k)] 
•P - • 2 - 7TC(l - c) f m 

V211p l.(k) Jo h•I(k) dk (34) 

When the scattering experiment is made with an incident beam of large 
height andJ1(h) is the measured intensity, equations 3.llb and 3.llc give 

lim [h3J1(k)] = i lim [h4I(h)] 

and 

i m 1 i"° h2J(k) dh = - h.F1(h) dk 
0 2 0 

Therefore 

s.p = 4c(l - c) lim [h3f1(h)] f"' k.F1(h) dh <35> 

The difficulty in evaluating the integrals Lm h21(h) dk or L"" hJ1{h) dh 

is that J(h) or J 1(h) is known only beyond a certain minimum value of h. 
The contribution of the unknown small-angle part of the curve is certainly 

relatively small, particularly in the integral L""h2J(h) dk, since here the 
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measured intensity is multiplied by h2• Nevertheless, there is still some 
uncertainty which causes this method to be less precise than the method 
employing the intensity of the direct beam. 

In interpreting certain results, Porod introduced the length 

l0 =4Vc/S 

which he designated as a "range of inhomogeneity." This length repre­
sents an average1 of the diameters of the parts of the specimen occupied 
by matter; for instance, for a collection of spheres of radius R, 10 = !R. 

Another parameter derived from the characteristic function of the 
specimen which can be rather easily determined experimentally is the 
distance of heterogeneity or extent of coherence, l0 (Porod [137]), given by 

the integral 2 f "'y(r) dr. Equations 2.109 and 2.110 determine l0 respec-
Jo f"' 

tively in terms of the integral Jo hl(h) dh and the total scattered energy E, 

the quantity obtained by measuring all the small-angle scattering outside 
of the direct beam in a counter or ionization chamber. These relations 
are the following: 

and 

l= hlhdh 1 i"" • 277 V p2c(I - c)l8 (h) o ( ) 

l = 1 ~ 
• V p2c(l - c)I.(h) A_2p2 

where p is the distance from the sample to the receiver. 

(36) 

(37) 

By making use of the normalization relation, equation 33, these 
become: 

i"'hl(h) dh 
l =71--'=-0----

• L""h2I(h) dh 
(38) 

and 

2712 E 

z. = A_2p2 f" h2J(h) dh 

1 There are several ways of calculating the "average value" of the diameters of a 
particle. The average value considered here is not the same as the average used 
in §2.1.2.4 (IR for the sphere). 
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For incident beams of large height, equations 38, 3.llc, and 3.lld give 

f') ..F1(h) dh 

l = 2 ° (39) 

c L'' h..F1(h) dh 

Direct measurements of the total scattered energy have not yet been 
employed, but, if the sample scatters rather strongly, the method devised 
by Warren (§3.3.7) could be used. The evaluation of the integrals 
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Fig. 51. Log f 1 vs. log x for a sa.mple of naphthalene. black. f 1 is 
the scattered intensity for an incident beam of infinite height, and x iB 
the distance on the film. The dashed line indicates a line of slope, -3. 

(L. Kahovek, G. Porod, H. Ruck [97'].) 

fhf1(h) dh and particularly ff1(h) dh cannot be made very accurately 
because of the unknown small-angle part of the curve. If the small­
angle scattering increases rapidly with decreasing angle (Fig. 51) the 
extrapolation of the curve to zero-angle is very uncertain. 

As an illustration of the application of these methods let us discuss the 
results obtained by Kahovek, Porod, and Ruck (97'] for a sample of 
naphthalene-black in which c = 0.12. The experiments were made with 
monochromatized Cu Koc radiation. The vertical dimensions of the slits 
defining the primary beam were large, so the beam could be considered 
as infinitely high. The intensity measurements were made with a Geiger 
counter. Figure 51 shows the curve of the variation of log./ 1 as a function 
of log x, where x is the distance between the point of observation and the 
direct beam. The curve verified the relation lim x3f1(x) = A, a constant. 
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In addition the following quantities were determined: 

f .F1(X) dx = E 

f x.F1(x) dx = Q 

From these it was found that for this sample, 

S h A 
V = 4 ; c (1 - c) Q = 7.5 m.2/cm.3 

4Vc 
l0 =s =650A 

xE 
l =2--=600A • h Q 

An electron-microscope study of this specimen showed spherical grains 
with a diameter of approximately 1000 A. 
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5. COMPARISON OF THE RESULTS FROM 

SMALL-ANGLE SCATTERING WITH THE 

RESULTS OF OTHER METHODS OF 

MEASUREMENT OF SMALL PARTICLES 

In verifying these theories and the experimental methods which arise 
from them, it is very important to compare the results of small-angle 
scattering analyses with the data from other methods, particularly those 
methods which yield results more directly. Furthermore, in ocder to 
judge the possible applications of X-ray methods, it is necessary to 
c.ompare their advantages and disadvantages with those of other physical 
methods. 

With this intent, Shull and Roess [155] and Van Nordstrand and Hach 
[126'] studied the size of particles of a very fine powder (alumina) by 
X-rays and then determined the total surface of the same sample by 
absorption methods. The results were in reasonable accord, particularly 
in the experiments of Van Nordstrand and Hach. The method of these 
authors ( §4.2.3) is independent of the rather arbitrary hypotheses 
demanded by the first method ( §4.2.2). Nevertheless these results do 
not give the desired direct verification. 

The real verifications have been obtained by working with particles 
that are visible to the electron microscope or by working with crystals 
whose dimensioUB can be determined from the width of their Debye­
Seherrer diffraction lines. 

5.1. COMPARISON WITH THE ELECTRON MICROSCOPE 

A good, well-handled electron microscope has a resolving power of the 
order of 20 to 30 A. It is therefore capable of giving reasonably accurate 
images of particles having diameters of several hundreds of angstroms. 
This is precisely the size of particles that can be studied by small-angle 
scattering. Therefore such images are the best means of checking the 
X-ray results, provided that a sample has been chosen for which a rather 
accurate calculation of the scattering can be made. 

The discussion of Chapter 4 has shown that it is necessary to choose a 
suspension containing identical particles if the calculatioUB are to be 
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accurate. Now very regular preparations of latex spheres1 exist which 
are actually used for calibration of electron microscopes. The mean 
diameter of these particles is 2780 A. Yudowitch [192] studied the 
small-angle scattering of these particles and, from measurements on five 
successive rings of the observed secondary maxima (§2.3.6) (Fig. 41), 
determined a diameter of 2740 A. Measurements of these particles were 
repeated in three different laboratories, with the following results: 
D = 2750 A, 2732 A, 2692 A. These numbers give an indication of the 
accuracy that can be obtained with the X-ray methoc;l. 

Testing the validity of the determination of the radius of gyration from 
the slope of the curve of log J(h2) is much more important because of the 
greater generality of this method. This also has been verified several 
times. As an example, let us cite the result obtained by Turkevitch, 
Hubbell, and Hillier [162] for particles of colloidal gold which were pre­
pared so that the variation in size was a minimum, about 10 per cent. 
The X-ray results gave a diameter of 824 A, and the electron microscope, 
700 A. Fournet [ 48] studied much smaller particles of colloidal silver 
and found a diameter of 130 A with X-rays and 120 A with the electron 
microscope. In this last case there was a somewhat larger variation in 
particle sizes than in the first. 

Thus it can be concluded that the validity of the formulas used in 
Chapter 4 has been proved experimentally. Let us also point out that 
periodicities in images of fibers (collagen) have been found with the electron 
microscope that had already been determined by small-angle X-ray 
diffraction. Direct images could be compared in a straightforward way 
with the models that had been determined by calculations from the 
diffraction patterns. This is an interesting result and one which cannot 
be achieved in the ordinary domain of X-ray diffraction, since the 
structure models that are determined in the ordinary domain are on a 
scale of the order of angstroms, completely outside the range of even 
the most powerful imaging apparatus. 

If the electron microscopy method is compared to that of the small­
angle scattering, the advantages of the first are quite evident. Both 
the form and the size of the visible particles can be determined, regardless 
of the heterogeneity or of the compactness of the specimen. The accuracy 
of the results of the electron microscope is thus much greater than that 
of the X-ray results when a good sample preparation can be made. 

A shortcoming of the microscope is that the specimen must be dried 
before it can be placed in the vacuum. This drying may cause either the 
destruction of or a serious, unpredictable modification in the sample. 
The X-ray technique, however, can be applied directly to suspensions 

1 Dow Latex 580 G. 
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or colloidal solutions. Certain other difficulties can often occur during 
the preparation of samples for the microscope; quite often the particles 
will agglomerate, so that the elementary particle can be isolated only 
with great difficulty. The image observed on the screen is the shadow of 
the apparent contour of the grain, and this size is a function not 
only of the nature of the sample but also of the condition of its 
preparation. 

In addition, if we consider a grain that contains numerous cavities, 
these cavities will produce a scattering of X-rays although they are 
invisible to the electron microscope. An example of this type of specimen 
is carbon after an activation treatment; the grain has an unchanged 
exterior form, but the activation has resulted in the emptying of internal 
cavities, considerably modifying properties that are related to the total 
surface of the carbon. 

On the whole, if there is disagreement between the X-ray results and 
those of the microscope, it can be predicted that the numbers obtained 
with the X-ray technique will probably be the smaller. 

5.2. COMPARISON WITH THE METHOD OF DEBYE-SCHERRER LINE 
WIDTHS 

If the sample is composed of very small crystallites, it is known that 
the diffraction lines are broadened and, that, from a study of their widths, 
or, more exactly, of the form of the lines, the dimensions of the crystallite 
can be determined (Wilson (1949), Bertaut (1950)). The line broadening 
is accompanied by the appearance of scattering at small angles, which 
can be considered as arising from the broadening of the (000) diffraction 
point. There is a very close relation between these two phenomena. For 
instance, let us consider the diffraction by a crystallite having a lattice 
that is assumed to be perfect. We can apply the general formulas (equations 
1.2, 1.3) to determine the scattered amplitude. Now in this case p(x) 
is periodic, so its transform, A(h), has a non-zero value only when h 
coincides with one of the vectors of the reciprocal lattice. The inter­
pretation of equation 1.3 is thus the following: each point of the reciprocal 
lattice is surrounded by the same region of scattering as is found around 
the (000) point (the origin of reciprocal space), each of these regions being 
determined by the "form factor" of the crystal, that is, by the transform 
of s(x) (Ewald (1940)). In this case there is no difference between study­
ing the small-angle scattering and studying the broadening of the high­
angle reflections. 

When the sample is composed of many crystallites arranged at random, 
Bertaut (1950) has shown that the width of a D'ebye-Scherrer line can be 
used to determine the root mean square thickness of the crystallite in a 



164 SMALL-ANGLE SCATTERING OF X-RAYS 

direction perpendicular to the corresponding lattice planes. The low­
angle scattering gives the radius of gyration of the particle and, thus, a 
mean square value of atomic distances from the center of the particle. 
There is thus a significant analogy between the results of the two methods, 
but the averaging is made in a particular direction when the reflection 
from a well-defined set of crystallographic planes is used, whereas there 
is no such privileged direction operating in low-angle scattering. 

There are several important differences between the two methods. 
First, the complete profile of a diffraction line can be determined, since 
nothing prevents measurements at the center of the line, whereas in 
low-angle scattering the undeviated direct beam prevents measurements 
from being made down to zero angle. Therefore the methods of analysis 
of the patterns are different. When studies are made of larger particles, 
which give only slightly broadened reflections, it can be predicted that 
the same difficulties will not be encountered with the line broadening 
measurements as with the low-angle scattering. Actually, the line 
broadening technique can detect crystallites whose size is greater than 
500 A with ordinary, small-diameter cameras, while such a particle 
dimension requires systems with large sample-to-film distances for an 
effective study of the small-angle scattering. 

The small-angle scattering is much more intense than the scattering 
around the lines, because all the crystallites of the powder contribute to 
this, regardless of their orientations, whereas only the small number of 
particles which are correctly oriented will contribute to the scattering 
at a point on the diffraction line; also, the atomic scattering factor is a 
maximum at low angles. 

Comparisons have been made between low-angle scattering results and 
those from line broadening, wherein an "average" dimension of the 
crystallite was determined by means of approximate formulas such as 
that due to Scherrer (Wilson (1949)), and the agreement between them is 
satisfactory. At present much more accurate methods, based on a 
Fourier analysis of the profile of the line, are known, but to our knowledge 
they have not been used for a comparison with the low-angle scattering 
analysis. 

Such a study could reveal differences arising from two sources: 
1. It is possible that the grains of the material would be made up of 

more than one crystal (Fig. 52). Now the width of a line depends on the 
size of the individual crystallite; if this is joined to crystallites of other 
orientations, the line width is not affected. It can thus be predicted 
that the small-angle scattering would give a larger crystallite size tba.n 
that found from the line widths. It is possible that the sample would 
not even be made up of separate grains; an example would be a deformed 
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metal in which there were no appreciable density fluctuations. The 
small-angle scattering would then disappear completely, and the diffraction 
lines would still be broadened. 

2. If the crystallite is not perfect, the lattice perturbations would 
produce a broadening of the lines. The separation of particle-size effects 
from those of lattice distortions is a difficult problem and has been widely 
discussed. Let us recall, for example, the long controversy over the 
origin of the broadening of the diffraction lines of a cold-worked metal. 

Fig. 52. Sketch of a polycrystalline grain. The solid line outlines the 
grain as revealed by small-angle scattering, and the inner boundaries 

are those revealed by Debye-Scherrer line widths. 

In any event, the relative influence of the two factors varies with the 
order of the reflection, while the influence of disorder is negligible in the 
low-angle scattering pattern, as we have shown in the introduction. If, 
therefore, the line broadening is attributed only to the influence of the 
crystallite size, the crystallite dimension that is so determined will be 
smaller than that found from the low-angle scattering pattern. For 
example, certain authors have calculated the particle dimensions in several 
varieties of carbon from the widths of the lines. Their results are not 
correct, since there is considerable distortion in the crystallites. The 
correct method, used by Franklin (1951), requires the use of the entire 
curve of diffracted intensity, including the low-angle scattering. 

We shall see in Chapter 6 an example of the separation of the effects 
due to the size and to the imperfections of the crystallite that is based 
on a comparison of the scattering at small angles with that around a 
Bragg reflection (Al-Ag alloy). 

When the degree of disorder increases, the material passes from the 
crystalline state to an amorphous state, and then the various diffraction 
rings are completely independent of the size of the particles. However, 
the particle size can still be determined from the low-angle scattering. 
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For example, a high polymer, such as Perspex, gives the same diffraction 
ring when it is in a solid state as when it is dissolved in acetone. The 
solution, however, gives in addition a small-angle scattering pattern from 
which the size of the micelles of the colloidal solution can be determined. 

Consequently the method employing the widths of lines can furnish the 
same information as that found from small-angle scattering only if the 
particles are practically perfect crystallites. If this is the case, it can be 
more easily and more accurately employed when ~he crystallites have a 
rather large volume. 
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6. THE APPLICATIONS OF THE 
SMALL-ANGLE SCATIERING OF X-RAYS 

We shall review in this chapter the principal problems to which the 
methods described in the preceding chapters have been applied. 

We would like to show how these methods have been employed in 
relation to the known facts of a problem and the objectives of the investi­
gation. Without summarizing all the different investigations, a list of 
which is given in the bibliography, we shall try to give a general picture 
of the results that have been obtained and of the possibilities of the 
methods a.t their present state of development, both for fundamental and 
applied research. 

We shall distinguish two classes of problems. 
1. The first will concern the study of well-defined particles, either 

large molecules or the grains of a finely dispersed substance. 
2. The other series of problems will concern the study of a solid that 

contains heterogeneities on a submicroscopic scale; these can be so 
complex that a particle model cannot be employed. 

6.1. LARGE MOLECULES 

A conclusion of the theoretical study of small-angle scattering was that 
such scattering can be most favorably exploited when the particles are 
identical and widely separated from one another. If the particle is a 
molecule that is chemically well defined, we can be sure that the first 
hypothesis is verified, and it is always possible to disperse the molecules 
in a solution or suspension dilute enough to satisfy the second. 

6.1.1. DILUTE SOLUTIONS 

The experimental conditions are good if the particles have a radius of 
gyration1 of the order of 10 to 50 A, or a volume of approximately 8 X 103 

to 2 X 105 A3• The corresponding weight of the particle is from I to 
50 X 10-20 g. if the density is between I and 2. The gram-molecular 
weight of such molecules is between 5,000 and 250,000. This is the 

1 The introduction of this po.re.meter, the radius of gyre.tion, is found on p. 24, 
where it was defined as the root mee.n aqua.re of the distances of a.toms from the 
center of gravity of the pe.rticle, ee.ch diste.nce being modified by a coefficient eque.l 
to the atomic nwnber of the e.tom. 
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order of magnitude of the molecular weights of many important biological 
compounds, as, for example, the proteins. 

These remarks explain why the study of proteins offers one of the best 
applications of this method. As a matter of fact a large number of 
investigations have already been carried out on proteins, as is shown in 
the bibliography at the end of the text. We believe that it is in this field 
that small-angle scattering can give the most valuable and most important 
results from a general point of view. 

The experimental work begins with the preparation of a dilute solution 
in which the molecule to be studied is found in a pure state (within 
several per cent). 

It is essential that the electronic density of the solvent be as different as 
possible from that of the molecule, because the smaller this difference, the 
weaker will be the low-angle scattering. 

Frequently aqueous solutions produce a rather intense scattering, so 
that solutions down to a concentration of only a few per cent can be 
studied. 

The object of the experiment is to determine the curve of the scattered 
intensity as a function of scattering angle. A photographic determination 
of the scattering pattern must therefore be followed by a microphoto­
metering of the film. It is certain that Geiger-Miiller counter measurements 
can be made to a higher degree of accuracy than photographic measurements, 
and this accuracy is very desirable, particularly for solutions of molecules, 
since the theoretical interpretation of this case is on a rather sound basis. 

The measurements of the radius of gyration of the molecules can be 
made by the method of §4.1.1.1. If the shape of the molecules is not too 
far from spherical, the description of the experimental curve as an 
exponential in -kh2 is a sufficiently accurate approximation over a large 
angular region. Here an incident beam of large height can be employed 
without having to make corrections before interpreting the curves of 
log /(h2) (seep. 114). This is important from the point of view of rapidity 
of measurement. As we have already indicated, the radius of gyration 
does not completely define the form and the size of the molecules, but 
(and here is a point of view on which we must insist) it is a well-defined 
geometrical parameter which can be considered as a characteristic of a 
molecule of any shape. 

The experimental techniques, as illustrated, for example, in the counter­
equipped apparatus of Beeman (Fig. 25, p. 95), have reached such a 
degree of simplicity and accuracy that one can envisage a broad program 
of systematic measurements of radii of gyration of different proteins or 
other large molecules in biochemical laboratories. 

There are many services which these measurements could render. We 
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have already seen how a knowledge of the radius of gyration, together 
with other data, can give indications of the shape and the real dimensions 
of the molecule.1 Figure 53a gives the curves of log J(h2) for a series of 
proteins, and it can be seen that the straight lines are defined well enough 
to permit an accurate determination of the radius of gyration. In Fig. 
53b the curves of log I vs. log h are plotted for two ellipsoids of the same 
radius of gyration with axial ratios of 2 and 3. The experimental points 
for ovalbumin fall just between these two curves, indicating that the 
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Fig. 53. (a) Log I vs. h' for solutions of different proteins; (b) log I 
vs. log h for ellipsoids of axial ratios 2 and 3 (theoretical). The small 
circles O show the experimental points obtained for a solution of 

ovalbumin. (Ritland, Kaesberg, and Beeman [492].) 

ovalbumin molecule has an axial ratio of about 2.5. With the latest 
improvements in experimental techniques (use of a powerful X-ray tube 
for studies of dilute solutions in which interparticle interferences are 
negligible, correction of the curves for the effect of beam height), the error 
in a determination of the radius of gyration is of the order of 2 to 3 per 
cent. This parameter could also be used as a means of identification, if 
no simpler method were possible. Finally, the single aspect of the 
linearity of the curve of log J(h2) is an indication of the uniformity of size 
of the particles and thus constitutes a means of inspection of the purity 
of preparations. For example, the curves of log J(h2) for euglobulin and 
pseudoglobulin extracts from the serum of horse blood are strongly 

1 In addition to the other data previously mentioned (p. 130),the sedimentation 
and diffusion constants can be used toward this end (Ritland, Kaesberg, and Beeman 
(492]). 
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convex (Ft<urnet [48]), and other techniques have shown that the globulins 
are complex mixtures. 

Dervichian, Fournet, and Guinier [419] have studied the denaturing of 
hemoglobin and albumin serums with urea. When the small-angle 
scattering characteristic of the molecules disappears, the molecules have 
been broken up into small fragments. If all the molecules are not 
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Fig. 54. Scattered intensity for a l'i per cent solution of tomato bushy 
stunt virus. The dotted curve is the theoretical curve for spheres of 
310-A radius. (Leonard, Anderegg, Shulman, Kaesberg, and Beeman 

[478].) 

destroyed, the patterns decrease in intensity without changing their 
appearance. A change of appearance of the patterns occurs when new 
particles are formed. 

Beeman and coworkers have obtained especially accurate results for 
virus macromolecules [376]. The experimental curve showed several 
peaks which the authors were able to make coincide with the successive 
peaks in a scattering pattern of homogeneous spheres. They thus demon­
strated that these viruses were spherical and found their diameters (Fig. 
54); for example, the diameter of the tomato bushy stunt virus was 
310 A. Then, by a comparison of this diameter with other molecular 
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constants, they were able to determine the degree of internal hydration 
of the molecules. 

It is quite evident that the information drawn from the low-angle 
scattering concerns only the exterior form and not the structure of the 
molecule, while much more information on the structure is contained in 
the diffraction patterns of crystallized proteins. 

By comparing the work of Fournet on hemoglobin in solution [48] 
with that of Perutz and coworkers on crystallized hemoglobin [407], it 
can be seen that these two. methods are undertakings of a completely 
different order of difficulty. The crystallographic method requires a 
considerable amount of work (and sometimes only for an uncertain result) 
both in the preparation of a usable crystal and in the interpretation of 
the patterns, whereas a low-angle scattering investigation of a solution 
can now be considered a routine operation. 

6.1.2. CONCENTRATED SOLUTIONS 

Another field of investigation in the study of large molecules such as 
proteins has been opened by the progress of more recent theoretical 
approaches. This is the study of the apatial distribution of molecules in 
solutions at high concentrations. 

The organization of the molecules in a solution can be successfully 
determined. The method to be applied for this purpose has been described 
in §4.1.2.1. Without repeating the detail'I of the technique, let us recall 
only that, if a solution is very concentrated and if the particles show a 
high degree of organization, the uniformly decree.sing scattering curve of 
the dilute solution is deformed, showing a bump or even a maximum. 

A practice.I consequence of this shape of the curve is that for a quanti­
tative study either the correction for the slit height must be made or else 
beams used that are as small as possible. Obviously this complicates the 
determination of the curves. Here again only Geiger-Muller counter 
measurements can convey the accuracy required for the theoretical 
calculations. However, photographic patterns can often give immediately 
qualitative information which will help to decide whether a precise study 
is worth being undertaken. 

The theoretical study showed that very carefully performed experi­
ments made on a series of solutions of various concentrations can lead to 
the determination of the mutual potential energy of a pair of molecules as 
a function of the separation of their centers, if it is assumed that the 
molecules are spherically symmetric. 

As an example of studies of this type, we cite those carried out by 
Beeman and his collaborators for various solutions of spherical viruses. 
Figure 55 gives the low-angle part of the scattering curves for solutions 
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of turnip yellow mosaic virus of various concentrations (Schmidt, 
Kaesberg, and Beeman (1954)). A maximum is observed on the curves 
for concentrations greater than 5 per cent. Now, theoretical calculations 
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Fig. 55. Interparticle interference effects in the low-angle scattering 
from concentrated turnip yellow mosaic virus solutions. The ordinates 
are adjusted so that the curves would coincide if scattering were pro­
portional to concentration at all angles. Curves A, B, 0, and D refer 
to concentrations of 1.6, 3.2, 6.3, and 12.8 per cent, respectively. 

(Schmidt, Kaesberg, and Beeman (1954).) 

based on the hard sphere model (§2.2.3.4 and Fig. 12) show that this 
maximum is perceptible for 8v0E/v1 > 2, where E is a constant approxi­
mately equal to unity, v0 is the volume of the molecule, and v1 is the 
reciprocal of the number of molecules per unit volume. By applying 
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this theoretical result to the observations on the virus solutions, a volume 
v0 is found which is 4 times as great as that determined from the experi­
mental scattering curves of dilute solutions. From this it is concluded 
that the molecules do not behave as hard spheres which can come in 
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Fig. 56. Scattering from red corpuscles in various preparations. 
(a) Artificia.l hemoglobin solution; (b) normal red cells prepared with 
heparin; (c) sickle cells prepared with heparin; (d) fetal red cells 
prepared with heparin; (e) normal red cells prepared with sodium 

citrate. 

contact with one another. Instead, there must be repulsive forces which 
give the molecule an effective collision diameter of about l.6 times their 
actual diameter. 

Differences in the form of the scattering curves have been observed 
between hemoglobin in normal human red corpuscles and hemoglobin in 
abnormal <iorpuscles (fetus blood, blood affected by the sickle-cell disease) 
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[420]. Hemoglobin extracted from these various cells and put in dilute 
solutions gives the same scattering curve, independent of its source. All 
these hemoglobin molecules therefore have the same radius of gyration, 
but the red corpuscles themselves give different curves in which the bump 
is more or less accentuated, depending on the type of corpuscle (Fig. 56). 
From this qualitative observation we can deduce that the organization 
of the molecules is less for the sickle cells than for the normal corpuscles 
but is greater for the fetus corpuscles. 

Let us point out also the work of Riley and Oster [371] on hemoglobin 
and on ova.lbumin serum in concentrated solutions that was based on the 
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Fig. 57. Bcatt.ering from a dilufe solution of hemoeyanine. The 
int.ensity in arbitrary units is plotted against 6 = Akf4.r (Cu Kcx 

radiation). (Kratky, Sekore., and Friedrieh-Freska (474).) 

method of interpretation discussed in §4.1.2.2.1. The same method of 
interpretation was used by Bateman, Hsu, Knudsen, and Yudowitch 
[382] in a. series of experiments on red cells swollen to different degrees in 
solutions of variable tonicity. Their results confirm those of Riley and 
Oster but are not in accord with the works previously cited. A basic 
assumption whose correctness is not proved in these works is that the 
molecules form a sort of para.crystalline structure, which expands without 
appreciably changing the nature of the molecular arrangement when the 
concentration decreases. 

Hemocyanine molecules [416], [474] are peculiar in that their scatter­
ing curve shows a maximum even for very dilute solutions (2 per cent), 
the position of the maximum being independent of the concentration 
of the solution (Fig. 57). It is therefore improbable that this maximum 
can be explained in terms of interparticle interferences. Isolated particles 
can give such patterns if it is admitted that the particles a.re complex, 
ea.ch being made up, for example, of a.n agglomeration of a certain number 
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of molecules joined together. This hypothesis agrees with the description 
suggested by observations with an electron microscope (Fournet [48]). 

As a last example, a considerable number of investigations have been 
devoted to aqueous soap solutions in the presence of electrolytes (see 
Bibliography). These solutions give a small-angle pattern containing 
rather sharp rings, often designated as I and M bands. In the majority 
of the investigations the two rings have been interpreted in terms of 
"distances" having simple physical meanings. For example, the M band 
was related to the spacing between two layers of molecules and the I 
band to an intermicelle distance by means of an equation analogous to 
4.24. 

It is certainly not permissible to separate the two peaks in this way or 
to apply to these micelles relations that are valid for crystalline arrange­
ments. The complexity of the patterns of the soaps arises from the fact 
that the micelle has an internal structure, so that the curve of its structure 
factor shows peaks. In addition, the micelles are rather ordered, so that 
there are strong interferences that deform the scattering curves of the 
individual micelles. An a priori analysis of the data is practically 
impossible. We can only assume different models on which calculations 
can be based (Corrin [359]), but as Hughes has pointed out [362], [363], 
there are many widely different models that can explain certain experi­
mental facts. 

It seems, therefore, that it is necessary at the present time to reconsider 
the majority of the "quantitative" results for soap solutions that have 
been arrived at by overly simplified reasoning. It is necessary to retain 
only those results that have been obtained by a restrained application of 
a correct theory to the patterns, leading to a modest but sure 
interpretation. 

There is no doubt that often the numbers that are given are not even 
approximately correcc, and the so-called "conclusions" from the X-ray 
patterns can only bring confusion into questions that have not yet been cleared 
up if these conclusions are adopted by non-specialists. 

In several cases the tendency to order among the large molecules 
becomes so strong that they tend towards a regular arrangement, and it 
becomes legitimate to adopt a crystalline model. The dimensions of the 
basic units are such that these lattices have very large cells, so that 
diffraction lines appear at very small angles. Bernal and Carlisle [9] 
found that the molecules of wet turnip yellow virus form a cubic, diamond­
type lattice. The distance between molecules is 304 A and the layer of 
water between neighboring molecules is 70 A thick. In this case the inter­
molecular forces succeed in bringing about good regularity over long 
distances. 
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Another example is furnished by the red corpuscles of a rat. After 
being subjected to a special treatment (Ponder (1945)), these give a 
small-angle pattern containing a series of extremely sharp lines that coin­
cide with those from hemoglobin crystals prepared from pure solutions. 
The organization of the molecules has here resulted in crystallization. 
At this stage the interpretation of the pattern becomes simple, because the 
classical procedures of crystallography can again be applied. However, 
we wish to repeat that it is justifiable to apply these procedures only if 
the experimental results permit it; the indispensable condition is that the 
pattern contain many well-marked lines. 

Despite the difficulties we have not hesitated to stress, it is certain that 
the results already obtained show the chemist and biochemist interested in 
large molecules that small-angle scattering patterns should no longer be 
neglected, as has generally been done. It is obviously in this region of a 
diffraction pattern in which the forms of scattering are found that show the 
organization of matter on the scale of large molecules. Even if a complete 
interpretation is not possible, the pattern can serve to characterize a 
product; therefore it can be a tool for following and checking preparations 
or fractionations. For example, lipides extracted from egg yolk give rise 
to two rather sharp diffraction lines. When these lipides are dissolved 
in alcohol a separation into two phases is observed; the upper phase 
always gives rise to two lines, while nothing is observed for the lower phase. 

6~.HIGH POLYMERS 
6.2.1. STUDY OF SOLUTIONS 

The large molecules formed by polymerization offer a natural field of 
application for small-angle scattering. But here a difficulty is found that 
did not exist for proteins; in general, the particles are not all identical, 
since the number of elementary monomeric units can vary from one 
polymer to another. It should therefore be expected ( §4.2) that quite 
often the X-ray results cannot be very precise. If there is only a small 
variation in the sizes of the polymers in the mixture, an average radius of 
gyration can be determined, as defined in §4.2.1. When a large range of 
sizes is present and when the mixture contains some very large particles, 
this measurement is difficult. It must not be forgotten that, from its 
definition, the "average" radius that is found is near that of the largest 
particles. Consequently this radius can be determined only if an appar­
atus is used that allows measurements at very small angles. If the shape 
of the particles is known and if it is assumed that they are all similar, it is 
possible to derive the distribution function for the sizes of the particles 
from the experimental measurements (§4.2.2). In order that the experi­
ments be accurate, the concentration of particles must be small, and it is 
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essential that they be contained in a medium of very different electronic 
density so that there will be sufficient scattered intensity. 

Kratky and Wurster [476], in a study of cellulose fibers submitted to a 
series of swelling agents, verified that the intensity of scattering at a given 
angle was proportional to the square of the difference of the electronic 
density between the crystallized cellulose and the liquid in which the 
micelles were immersed. An unknown electronic density in particles can 
thus be determined by finding the solvent that cancels the small-angle 
scattering. 

The result of such small-angle scattering experiments could be the 
determination of molecular weights of high polymers. Actually, to the 
best of our knowledge, there has not yet been a systematic employment of 
X-rays towards this end, either because of difficulties in the method for 
particles that are too large or of too heterogeneous a distribution, or 
because other physical methods are simpler and more certain. 

Kratky and Porod [469] have studied the scattering from coiled chain 
molecules in solution. Calculations predicted a small-angle scattering 
curve of the form e-kh", but this part is not visible since the radius 
of gyration of the molecule is too large. They further predicted that for 
increasing angles the intensity would vary first as h-2 followed by a curve 
in h-1• Thus, if a plot of the measured intensity multiplied by h2 were 
made, we would obtain a horizontal straight-line section followed by 
another straight line of negative slope. The transition point between the 
two parts of the curve would be related to the mode of coiling of the 
molecule, or, more exactly, to the "distance of persistence" in which on 
the average the molecule does not change its orientation appreciably. 
An experiment was made on polyvinylbromide in methylnaphthalene. 
The theoretical results were not verified very clearly, but nevertheless the 
measured distance of persistence was of the expected order of magnitude. 

6.2.2. STUDY OF FIBERS 

X-rays have been used to a great extent in the study of polymers in the 
form of fibers (see Bibliography). In fibers the particles have a common 
average orientation, and this, by simplifying the interpretation of the 
scattering patterns, increases the interest in them considerably. Thus it 
was noticed a long time ago that ramie fibers gave a low-angle scattering 
spot that was elongated in the direction perpendicular to the fiber axis. 
In the direction parallel to the fiber axis (the fiber is then placed perpen­
dicular to the height of the beam if this is defined by slits), the scattering is 
not perceptible if measurements cannot be made at extremely small 
angles. This is immediate proof, in advance of any quantitative 
measurements, of the existence of elementary particles that are very 



178 SMALL-ANGLE SCATTERING OF X-RAYS 

a 

A 

-*-
B (a) 

a b c 

Fig. 58. (a) Sme.11-e.ngle scattering from cylindrical e.nd le.melle.r 
micelles on e. helix a.bout the fiber a.xis; (b) ame.ll-e.ngle patterns of 
vegetable fibers: a, coir; b, Tula ixtle; c, J e.ume.ve ixtle. (Heyn [446].) 
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elongated in the direction of the fiber axis. Hosemann [80] has succeeded 
in estimating the length of these cellulose micelles as being greater than 
3000A. 

The first result to be obtained from the patterns is therefore the demon­
stration of the form and orientation of the elementary particles in a very 
simple, qualitative manner. Heyn [442] has studied vegetable fibers, in 
which the micelles are arranged in spirals around the fiber axis. The 
pattern is composed of a cross, the angle between the branches being 
twice the angle that the axis of the micelles makes with the fiber axis. 
This pattern can be explained by assuming that the micelles are not 
cylindrical but are rather in the form of lamella. To show this, let us 
consider a cylindrical particle making the angle a. with the fiber axis, 
which is normal to the X-ray beam (see Fig. 58). This causes a streak of 
scattering elongated in the direction OX, the line of intersection with the 
film of the plane normal to the axis of the micelle. When the particle 
rotates around the fiber axis, OX sweeps out ;i AOB = 2ot. But the 
variation of the intensity along OX will maintain itself more or less 
constant throughout the interior of this angle because the average 
inertial distance of the cylindrical particle in the direction of OX is 
independent of the position of the particle. On the other hand, if the 
particle is a thin plate, the direction OX is parallel to the direction of 
minimum thickness only for the limiting directions, OA and OB. There­
fore a cross rather than a fan-shaped pattern should be observed if the 
particles have the form of lamella, and this is the result given by experi­
ment. 

Heyn [446] has also used small-angle scattering to show the orientation 
phenomenon in fibers of viscose drawn under different conditions. 

The fiber that has been studied the most with X-rays is cellulose, for 
which the existence of a low-angle scattering in the form of a streak 
perpendicular to the fiber axis was long ago observed (Mark (1932); 
Kratky [466]; Hosemann [452]; P. H. Hermans [440]; etc.). But it 
cannot yet be said that a clear picture of the micelle structure of cellulose 
has been achieved. This structure is certainly very complex, and the 
different investigators have tried to interpret the scattering patterns by 
means of predetermined models which were necessarily oversimplified. 
This has led to quite varied results which do not agree among themselves. 

A method of quantitative interpretation of such a pattern, based on the 
assumption of no interparticle interferences, was given in §4.1.1.2. An 
"average inertial distance" with respect to the fiber axis is obtained 
(equation 4.11) that plays the role of a radius of gyration for disoriented 
particles and that is a characteristic of the breadth of the particle per­
pendicular to its axis. Heyn [447], in a study of different fibers in a wet, 
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swollen state, found quite linear curves of log 1(h2) and determined 
inertial distances of the order of 8 A for jute and 12 A for ramie. If the 
particles are cylindrical, these correspond to diameters of 22 and 35 A, 
respectively. 

Many fibers give curves of log J(h2) having a curvature too accentuated 
to allow a valid determination of the radius of gyration. Attempts have 
been made to determine the combination of particles of various sizes that 
would give the observed pattern. Hosemann [80], by applying the 
methods of §4.2.2, has determined the statistical distribution of the 
diameters of particles of acetylcellulose. 

Nevertheless, the question arises whether it is legitimate to apply 
methods to cellulose fibers that are valid theoretically only for a system 
of particles of low concentration, since the known, rather high density 
of this fiber leads to the prediction that the micelles should be very 
tightly packed (see Bibliography for numerous papers by Kratky and 
Heyn). Actually this approximation is perhaps not as bad as could be 
feared, since the individual particles are not of uniform size. It has 
been shown ( §2.3.3) that irregularity of sizes considerably diminishes the 
influence of interparticle interferences for random-shaped particles. It is 
just as true, however, that there are certainly cases in which the appear­
ance of the scattering curve proves that interferences are playing a part 
(see §6.2.3). 

A supplementary item of information, the absolute value of the scattered 
intensity, can also be used, as was done in comparing dry and wet cellulose 
(Fournet and Antzenberger [434']). This is not useful in finding a priori 
the structure of the cellulose, but it enables a decision to be made on 
whether a model of the structure is acceptable. As a result of this work, 
cellulose can no longer be considered as made up of particles isolated by 
empty spaces; rather we must assume the existence of dense particles 
having an ordered internal structure, each surrounded by amorphous, 
cellulosic matter of slightly lower density. The volume occupied by the 
"particles" is of the order of 25 per cent of the total volume, so that it is 
legitimate, for dry cellulose, to use the approximation of a dilute system. 
When the cellulose is swollen by water, the density of the intermediate 
regions becomes smaller and the contrast of the "particles" increases. 
This causes the very definite increase in the intensity scattered by the 
system that is observed experimentally. At the same time the particles 
become more organized (§6.2.3). 

Kratky and his collaborators take as a base for their interpretation a 
model drawn from general knowledge about the structure of fibers. The 
micelles are taken to be in the form of thin platelets having large surfaces. 
These platelets are stacked on one another in an approximately parallel 
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manner like pages in a book, but these "pages" are of irregular thicknesses 
and are separated from their neighbors by intervals that are also more or 
less irregular. The complete fiber is formed of groups of micelles having 
in common a general direction of the fiber but with slight misorientations. 
We have seen in a previous section that micellar plates of thickness d and 
random orientation in a system of low concentration give a scattered 
intensity in the region accessible to experiment which is proportional to 

; 1 d (8in~7j2)r (equation 2.41).1 Furthermore a group of Ia.mellar 

micelles will give an intensity proportional to Ji.-1<1>, where «II is a one. 
dimensional function which depends on the distribution of empty a.nd 
occupied segments on the normal to the plane of the lamellas. The 
method of Kratky and Porod [137] is thus to muUiply the observed intenaity 
by h.2 and to interpret the resulting function «II as the scattering pattern 
of a linear structure. This pattern depends not only on the distribution 
of thicknesses of the micelles but also on their arrangement. We have 
already pointed out (p. 70) that the importance of interferences is par· 
ticularly great for linear structures. The controversies that have arisen 
between the partisans of the theory of isolated particles (which neglects 
interparticle interferences) and those who give these interferences & 

dominant place in the explanation of small-angle scattering phenomena 
have been obscured by the fact that the two groups are working from 
different models. 

Zernicke and Prins [309], J. J. Hermans (1944), Porod [137], and 
Hosemann [276), [278) have calculated the scattering from different 
models of linear structures for given statistical distributions of segments 
and the intervals which separate them. One of these models is the 
following: Segments of equal length or with small fluctuations a.round an 
average length a.re separated by intervals such that the degree of expansion, 
the.t is, the ratio of the total length of the structure to the total length of 
the segments, is fixed. The total length of the intervals between segments 
is given, but the division of this length into individual intervals is randomly 
made. For an infinite degree of expansion we observe the scattering 
from isolated particles (Fig. 59), and as the density of the system increases 
the curve becomes deformed, just as was found for the closer packing of 
spherical particles (Fig. 12). The difference between these cases is that 
the intensity scattered by dense linear systems decreases in absolute 
value until it becomes zero when there is no interval between segments, 
whereas spheres in a compact structure still give a crystalline diffraction 

1 This expression describes equation 2.41 in a slightly modified form, where l/R1 

has been replaced by d; this follows from the fact that Rid is proportional to n, 
the total number of electrons in the particle. 
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pattern. Janeschitz-Kriegl [457] has studied the small-angle scattering 
pattern oft hreads of viscose in various degrees of distention. By compar­
ing the experimentally determined curve of h2J(h) with the group of 
curves of Fig. 59, he concluded that the micelles had an average thickness 
of 50 A with a fluctuation of 50 per cent, but the determination was not 
very accurate. 

Another model is one of segments whose distribution of lengths follows 
a Gaussian curve, these segments being separated by small, equal intervals. 

1.0 ..-:::------------------, 

q=r:JJ 

0.5 3 

2 

1.5 

1.2 1.1 

0 
0 0.5 1.0 

ah 
211" 

Fig. 59. Scattered intensity from a linear structure composed of 
segments of uniform length, a, separated by intervals which follow the 
distribution law for perfect disorder, H(y) = (l/b)e<-11/•>, where b is 
the average interval. The degree of expansion, q, is equal to (a + b)Ja. 

This is therefore a very dense system. The scattering curve is similar 
to that for a liquid or, rather, a paracrystal. The intensity is very weak 
at very low angles, and there are large maxima in the neighborhood of 
the angles at which would be found the maxima from a linear lattice of 
period equal to the average micelle thickness. lVhen the fluctuations of 
thickness are large, only the first two such maxima are observable. The 
experimental curve of h2I(h) for non-distended fibers of viscose [457] is of 
this type and gives a mean micelle thickness of. 40 A. However, the 
agreement between theoretical and experimental results is rather 
qualitative. 
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6.2.3. ORDERED ARRANGEMENTS OF MICELLES 

Certain high polymers give a completely different type of small-angle 
scattering pattern. Instead of a scatt{lring that decreases regularly from 
the center, bumps or maxima are observed that are more or less pro­
nounced. These patterns are similar to those already pointed out in 

0.3 h = 4X8 (A-1) 

Fig. 60. Absolute measurements of the intensity per C6H 100 6 group 
scattered by ramie fiber. Curve a: dry fiber; curve b: wet fiber. 

connection with concentrated solutions, but with the added complication 
that the pattern no longer has circular symmetry, showing lines or diffuse 
spots instead of rings. 

This effect has been noted on patterns of substances such as moist 
cellulose (Figs. 60 and 61), the polyamides (nylon), and the polyethylenes 

I 

•• 
(a)- (b) 

Fig. 61. Small-angle scattering pattern of "Fortisan" rayon. 
(a) Fiber in the dry state; (b) fiber swollen in water. Natural size of 
photograph; sample-to-film distance 20 cm.; Cu Ka. radiation. 

(Heyn (1953).) 

[442], [441'], [441"], [480]. Although complete use has not yet been 
successfully made of the data, these observations apparently are the 
origin of an important application of small-angle scattering methods. 
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Figure 63 gives an idea of the effects that are observed. It should be noted 
that the use of the photographic method is almost indispensable in this kind 
of study. The general appearance of the pattern that will be found is 
not known a priori, and a correct interpretation of a Geiger-Muller 
counter measurement without previous photography would be practically 
impossible. 

The explanation of these phenomena is based on the existence of an 
order among the particles, or, in a more general manner, on the existence 
of certain large-scale regularities in the density of matter. 
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Fig. 62. Small-angle diffraction pattern from a plain, dry fiber of 
kwigaroo tail tendon. Fundamental period of sample: b0 = 627 A. 

(Bear and Bolduwi (397].) 

As we have already pointed out, the problem is simple when the sample 
can be considered in terms of a well-defined, true periodicity. The most 
typical example is provided by the fibers of collagen (kangaroo tail) 
(Bear and Bolduan [397]) (Fig. 62) or fibers of myosin, in which the 
periods along the fiber axis are respectively 700 and ] 46 A and in which 
the periodicity is so perfect that the pattern contains several tens of lines, 
up to very high orders (40th). In other substances periodicity exists in 
the plane perpendicular to the fiber axis. This structure is manifested 
by quite sharp lines, small in number {often only two), on the equator of 
the pattern. This is exemplified by chrysotile (Fankuchen and Schneider 
[434)) and by the tobacco mosaic virus. These can be explained by 
assuming that the molecules show a crystalline type of arrangement 
{hexagonal). The different molecules of tobacco mosaic virus are 
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separated by a fixed distance; Bernal and Fankuchen [402] found this 
to be equal to 152 A for the dry state and 450 A when the virus is in 
solution. The arrangement is rather imperfect, resulting in a broadening 
of the reflections. 

These viruses are exceptional cases. Generally the degree of regularity 
is much smaller, which seems natural, given the weak forces that can be 
exerted between the large basic units. The difficulties in interpreting 
the observed facts are consequently greater, and a complete explanation 
of the facts is still far from being achieved. Two methods of approach 

I ~---1-_J~!-- ----i--- ----------~ 
(a) (b) (c) 

Fig. 63. Small-angle pattern of synthetic fibers. (a) Copolamide, 
stretched, T = 20° C; (b) same material, stretched, T = 200° C; 
(c) same material drawn from the melt, unstretched, T = 20° C. Fiber 
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Kiessig [44.l'].) 

are generally adopted: the use of either a model of a perturbed crystal 
in which there is no long-range order (a paracrystal) or a model of a 
gaseous arrangement in which the disposition of neighboring molecules 
is somewhat ordered. At present we can only repeat the conclusions 
offered in the discussion of ordering between molecules of proteins or 
soaps. It is dangerous to apply results valid for crystalline arrangements 
to these cases without caution. The application of Bragg's law should 
be distrusted, even when it is believed to be "corrected" by the use of a 
factor somewhat larger than unity (1.23, 1.22, 1.16, 1.05, etc.). 

It is certainly regrettable that these negative remarks cannot be 
followed by a correct general interpretation, but this has not yet been 
developed. 

As an example of the general case, let us consider the patterns of 
synthetic polyamide fibers (Hess and Kiessig [ 441 '], [ 441 "]). In addition 
to a central spot elongated perpendicular to the fiber axis, the pattern 
also contains two other regions of scattering whose aspect and position 
vary according to the treatment given to the fiber (Fig. 63). For example, 
a copolamide gives rise to two rather diffuse streaks perpendicular to 
the fiber axis. The centers of these streaks are found by Bragg's law to 
correspond to a distance of the order of 80 A. Hess and Kiessig proposed 
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as a model of this structure a regular arrangement of micelles with a 
periodicity of 80 A along the fiber axis. The smearing out of the spots 
was interpreted as being the result of the small number of micelles 
coherently grouped together. When the temperature of the fiber is 
raised, the distance of the spots from the center of the pattern diminishes 
a little, which, according to the above model, would mean that the 
periodicity increases by a lengthening of the elementary micelle. But, in 
trying to take account of all the observations, this model leads to contra­
dictions, as Hosemann [84] has pointed out. If it were true that the 
width of the spot, interpreted as a crystalline reflection, is due to the 
limited size of the crystallite, a diffuse spot of the same size should be 
found around the center of the pattern, the (000) reflection, as was pointed 
out on p. 163. This is not the case; although different treatments of the 
fiber can modify the two other spots, the central spot does not vary. 
Moreover, no spots corresponding to higher orders of reflection have been 
detected. Thus the "crystalline" model is not a useful approximation. 
The starting point for a correct explanation is to suppose that the fiber 
contains micelles between which there is a lower density of matter. 
These micelles are distributed with a certain degree of order, particularly 
in the direction of the fiber axis. This organization of the micelles among 
themselves will cause the large scattering maxima that are observed. It 
may be possible to define this organization quantitatively but only on 
two conditions: (1) We must begin with a scattering curve that has been 
well determined experimentally. This means that a counter should be 
used to determine precisely the shape of the scattering distribution that 
the photographic technique has revealed. (2) We must consider the 
complete curve of the scattering. The simple determination of the position 
of the maximum has no significance. This maximum, in fact, can be 
displaced either by a change in the organization of the micelles, as, for 
example, when the organization becomes more regular (seep.140),or by the 
agglomeration of a larger number of micelles without the micelles themselves 
changing dimensions. These effects are opposite to those foreseen by 
Hess and Kiessig. This shows, for example, that the theory of the effect 
of temperature can be completely changed. 

A detailed quantitative study of the large-scale organization of polymers 
in fibers has not yet actually been approached. Not only are the experi­
mental data merely qualitative (the observations of Heikins, Hermans, 
and Weidinger [439] on the fiber G, moist "Fortisan," and those of Kratky, 
Schauenstein, and Sekora [470] on natural silk), but also the theoretical 
difficulties have not yet been fully resolved. The progress already 
accomplished in the study of imperfect crystalline structures leads to the 
hope that this new aspect of the structure of polymers, the importance 
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of which cannot be questioned, will soon be taken up. In any event the 
experimental techniques are already sufficient to undertake this kind 
of work. 

6.3. FINELY DISPERSED SOLIDS. CATALYSTS 

\\re shall now consider the case in which the particle is no longer a 
molecule but is instead a grain of matter of very small dimensions, as for 
example those found in colloidal suspensions or in extremely fine powders 
such as certain catalysts. The problem is to carry out a granulometric 
measurement with X-rays when the grains are too small to be studied by 
other methods. The particle dimensions most favorable to an X-ray 
study are from several tens to a thousand angstroms. This upper limit 
can certainly be exceeded with X-rays, but the experimental difficulties 
involved in a measurement of a dimension of, let us say, 5000 A (0.50 µ) 
are not justified in practice, since other methods are much simpler for 
particles of this size. 

The major difficulty limiting the effectiveness of X-ray measurements 
is that in general the particles are not uniform in either size or form. Also, 
if the sample is in the form of a powder, the particles are generally packed 
closely against one another. This represents therefore the least favorable 
case for the interpretation of small-angle scattering. Realizing the 
complexity of the data, there is no hope of drawing from the single 
scattering curve I(h) a complete description of the distribution of forms 
and sizes of the particles being studied. Calculations such as those made 
for molecules in concentrated solutions are not at all applicable. 

Nevertheless, there is an important favorable element in this problem, 
which is that the non-uniformity in the sizes of the particles diminishes 
the influence of interferences even between nearest neighboring particles 
(p. 70). It is therefore not unreasonable to assume that the observed 
intensity is the sum of the intensities diffracted by the individual particles. 

The first studies of fine powders based on theories for the low-angle 
part of the scattering curve have been able to give only qualitative results. 
There arc almost always large particles in the mixture for which these 
theories are not valid, so that it is only rarely that an average radius of 
gyration can be obtained which has real significance (§4.2.1). The 
attempts at determining the distribution of grain sizes depend so greatly 
on the initial hypotheses that the results should be applied only with 
many precautions. 

The methods of analysis based on theories for the tails of the scattering 
curve (§4.2.3) seem capable of giving more interesting results. In no 
case can a complete picture of the structure be given by small-angle 
scattering experiments, but a parameter whose definition is quite precise, 
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the specific surface of the specimen, can be successfully obtained without 
resort to arbitrary hypotheses. Likewise, the radius of gyration can be 
determined accurately and without arbitrary hypotheses from experi­
ments on dilute systems of particles of uniform size. Since the specific 
surface is a very important property of fine powders, the methods of 
analysis of §4.2.3 should give rise to very interesting applications. These 
methods, however, a.re too new for a. sure judgment of their practical 
value to be given. 

log! 

Fig. M. Log J(h1 ) for three samples of carbon black: 1. Standard 
grade 6, channel black. 2. Sample P33; large particles formed by 
thermal decomposition. 3. Carbolac l; channel black of extremely 

fine particle size. (Biscoe and Warren (10].} 

6.3.1. CARBONS 

Severa.I varieties of carbon, both artificial and natural, are found in 
very fine grain sizes. As a matter of fact, it was on these substances that 
small-angle scattering was first observed and immediately attributed to 
the state of division of the matter. The pattern of small-angle scattering 
is very dependent on the type of carbon. Practically invisible for 
anthracite, it is intense and contained within small angles for lampblack; 
it becomes more or less enlarged for the different preparations of carbon 
black, and, finally, it is very intense and extends over a large angular 
region for certain active carbons. A typical example is given by the 
comparison of three carbon blacks used as a charge in the rubber industry. 
Figure 64 reproduces the curves obtained by Biscoe and Warren [10], 
represented as curves of log /(h2). The characteristic of each of these, 
the general rule in studies of powders, is that the curves of log J(h2) are not 
linear but are curved in such a way that the slope increases with decreas­
ing scattering angle. The intensity incr(ll8.Ses so rapidly as the small 
angles are approached that it is not possible to obtain the complete curve 
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by photometry of a single film; a series of films of different exposures 
must be made and their results combined. Two situations can occur. 
As in curve 1, the variation in slope may become small enough near the 
low-angle limit so that an extrapolation of the curve to zero-angle is 
possible. This means that the largest particles in the sample do not have 
a radius of gyration too large to escape the measurement (p. 149). The 
slope at the origin then gives the average radius of gyration as defined in 
§4.2.1 (R0 = 210 A). In the other case (curves 2 and 3), the curvature 
of the curve at small angles is such that an accure.te extrapolation cannot 
be made. The average re.dius of gyration cannot be measured without 
extending the measurements to smaller scattering angles. All that can 
be said is that there is a lower limit to the average re.dius. The inter­
pretation of these curves can only be qualitative. The genera.I aspect of 
the curves shows that sample 2 contains many large particles and only a. 
few small ones. In sample 3 there is apparently a. mixture of large 
particles with a large proportion of very small particles, the large particles 
giving rise to the very steep initial part of the curve and the small particles 
causing the only slightly inclined tail of the curve. 

If the statistical methods described in §4.2.2 are applied, it is necessary 
to make use of a very precise experimental curve extended down to very 
small angles. It is necessary, furthermore, to apply corrections to this 
curve for the effects of slit height ( §3.4.2), e.nd these corrections are not 
negligible for curves of log I(h2) that are very non-linear. 

6.3.1.1. Practical Study of Carbon Blacks 

Although it is difficult to obtain a rigorous description of the grains of a. 
sample, the X-ray data can nevertheless have useful technical applications. 
The scattering curve by itself characterizes the state of division of the 
matter and often can be used to distinguish the various qualities of carbon 
blacks and even to classify them qualitatively as to degree of fineness. 
Such information is simple to obtain. The intensity scattered by carbons 
is very high; it is not necessary to monochromatize the radiation, and the 
Geiger-Muller counter measurements, which are preferable to photography, 
are very rapid. 

It has been reported [126'] that satisfactory results can be obtained 
with a commercial spectrometer to which only very simple modifications 
and adjustments have been made (it is necessary to use small slits and to 
place the sample holder so that the powder sample, in the form of a plate 
of appropriate thickness, is normal to the incident beam). The results of 
the measurements are much more interesting if care has been taken to 
insure that the scattering mass has been held constant for a series of 
samples. To illustrate this, let us consider the following schematic 
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example: one carbon black is made up entirely of fine particles, and a 
second is made up of 50 per cent of the same particles and 50 per cent of 
grains which are so large that they produce no scattering in the accessible 
angular region. The two scattering curves will be superposable, but, if 
the scattering masses are the same, the intensity from the second sample 
will be only one-half the absolute value of that given by the first. There­
fore, if only fine particles are active particles, the quality of the sample 
is directly characterized by the absolute value of the scattered intensity. 

The proper execution of such an experiment requires that the X-ray 
tube input and the geometry of the scattering apparatus be held constant. 
The constancy of the scattering mass, also necessary, can be easily main­
tained, as, for example, by the following technique: a fixed mass of 
powder is placed in a small cylindrically shaped cup with a mica bottom. 
The powder is spread into a uniform layer and then compressed by a 
cover that also has a mica window. In this manner the mass per unit 
surface will be the same for all the samples, and, since the cross section of 
the beam is invariant, the scattering mass is then constant from one 
experiment to the next. 

6.3.1.2. Structure of Different Varieties of Carbon 

Brusset [13], [18] has used small-angle scattering to compare natural 
carbons of various origins anrl has shown that they are differentiable 
from the point of view of their granular structure. Riley [141] found an 
anthracite from \Vales that gave a very singular pattern containing a 
ring of scattering. IWey compared this pattern to those of liquids and 
suggested that in the carbon there were particles in contact with one 
another. Let us point out that analogous patterns have Leen founcl for 
age-hardening alloys (p. 204) and that a different interpretation has been 
given them. This interpretation involved particles which were isolated 
but showed internal density variations. It would Le interesting to see 
whether an analogous explanation could be valid for these carbons. 

R. E. Franklin [56'], [56"J has studied the structure of carbon blacks 
obtained by carbonization of organic substances. She obtained an atomic 
distribution function such as is obtained for liquids by a :Fourier inversion 
of the complete intensity curve, including Loth the small-angle scattering 
and the high-angle diffraction maxima. In this way she determined at the 
same time both the structure of the carbon and the dimensions of the 
particles. These particles were for the most part isolated layers of the 
graphite ;;tructurc, the particle produce(l by pyrolysi;; of polyvinylidene 
chloride at 1000° C. having a diameter of only 16 A. Tlw size of the 
particles increased with the temperature of carbonization. Franklin also 
used a Fourier transformation to interpret only the curve of small-angle 
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scattering. However, this transform, analogous to the characteristic 
function of Porod [137] ( §2.4.3), does not have a simple physical signifi­
cance because of the non-uniformity of the particles and because of their 
interactions. 

Another interesting example is that of activated charcoal. Cocoanut 
charcoal, before activation treatment, gives only a rather limited and 
weak, low-angle scattering. However, after activation the scattering is 
extremely intense and extends out to angles of several degrees. Actually, 
this is the substance that gives the strongest low-angle scattering observed. 

log! 

Fig. 65. Log J(h') for activated charcoals: (a) activated cocoanut 
charcoal; (b) and (c) charcoal activated by two different treatments. 

(Brusset [13].) 

The curve oflog /(h2) for this sample shows a very pronounced curvature 
followed by a long linear part of small slope (Fig. 65). It might then be 
said that the sample is made up of a mixture of particles of very different 
sizes, the smallest particles having a radius of gyration not larger than 
10 A. Yet, given the method of activation of the charcoal, this model 
is not satisfactory, for it is known that the activation does not have the 
effect of producing a fine powder but rather that it produces cavities in 
the interior of a grain by dissociation of the tarry substances that fill it. 
The active surface is thus increased, which gives large absorbing properties 
to the charcoal. 

The model of isolated material particles is, therefore, completely 
inadequate in this problem. We could more validly adopt the opposite 
point of view, the small holes in the interior of grains of large dimensions 
playing the role of small scattering particles. The important factor in 
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the scattering is the difference in density between the particle and the 
surrounding medium; two complementary objects (Fig. 66) in which the 
holes of one correspond to the solid parts of the other give exactly the 
same scattering pattern in the region accessible to experiment ( §2.2.2.2). 
The 10 A radius of gyration would accordingly correspond to the smallest 
pores of the active charcoal. 

It would certainly be quite interesting to undertake measurements of 
the specific surface of carbons by the method of §4.2.3. This would be 
a precise and probably convenient method for characterizing the porosity 
of a carbon. 

Fig. 66. A sketch of the structure of two complemente.ry objects. 

6.3.2. CATALYSTS 

This is a domain in which the applications of small-angle s~attering are 
the most immediate since the granulometry of a catalyst is an important 
factor in the value of the product. 

Pulverized catalytic nickel is obtained by various processes. It is 
known that Raney nickel is more active than Sabatier nickel, and small­
angle scattering shows immediately that the first is made up of much 
smaller grains than the second [65]. 

The difficulties of interpretation already pointed out for the carbons are 
found again for the catalysts. Nevertheless, determinations of the 
statistical distribution of grain sizes have been successfully made. Elkin, 
Shull, and Roess [41] applied the method of §4.2.2 to desiccated silica and 
alumina gels as well as to oxides of nickel and iron. Then, from the 
measured distribution of grain sizes, they calculated the specific surface 
of the catalyst and obtained good agreement with the result given by 
classical gas adsorption methods. This very interesting result gives some 
confidence in the hypotheses used in the calculations and shows that at 
least in certain cases a precise analysis of the patterns deserves to be made. 

As has been done for the carbon blacks, certain laboratories are 
beginning to use small-angle scattering to characterize a catalyst from a 
technical standpoint. The following example makes the most of the 
advantages of this method. 
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Van Nordstrand and Hach [126'] showed that the form of the scattering 
curve was progressively modified as an alumina catalyst was subjected to 
heating at higher and higher temperatures, the small particles disappear­
ing by partial fusion. If a catalyst has partially lost its activity after 
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Fig. 67. Log I vs. log h' for different samples of alumina catalysts. 
The dotted line shows the theoretical 1i-• dependence. (Van Nordstrand 

and Hach [126'].) 

use, this can arise from two causes: either a part of the product has been 
rendered completely inactive, the rest still being good, or else the whole 
catalyst has been slightly modified. The remedies to be considered are 
different in the two cases. Small-angle scattering will allow a sure 
diagnosis: in the first, the form of the curve will not have varied, hut its 
absolute intensity will have decreased; in the second, the form of the 
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curve is modified. The same authors found empirically that the intensity 
Sl'attered at rather large angles varied as h-4 (Fig. 67) and that in this 
region the intenHity at a given angle for a given mass of catalyst was 
proportional to the specific surface of the catalyst as determined by the 
nitrogen adsorption method (Fig. 68). This is an excellent verification 
of Porod's theory (§2.4.3), though it was apparently unknown to these 
authors. After a preliminary calibration a measurement of the specific 
surface could be made with X-rays in five minutes with a very simple 
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Fig. 68. Specific surface areas as measured by X-rays and by nitrogen 
adsorption. (Van Nordstrand and Hach [126'].) 

apparatus such as a commercial Geiger counter spectrometer (p. 95). 
They found also that the measurement of small-angle scattering curves 
could sometimes advantageously replace the determination of gaseous 
adsorption-desorption isotherms. 

6.3.3. COLLOIDAL SOLUTIONS 

Colloidal micelles generally are of a size favorable to study by X-rays, 
and when colloids of high atomic weight, such as certain metals, are 
considered, the very high intensity of the small-angle scattering makes 
the measurement easy to carry out. 

Fournet [48] studied a solution of colloidal silver and obtained a curve 
of log /(h2) which had a long linear part; from this the radius of gyration 
could be easily determined, the result being 50 A. The same colloid after 
flocculation gave a curve of log /(h 2), which could be superposed almost 
exactly with the curve of the first solution except at very small angles. 
This shows that, although flocculation has caused a drawing together of 
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the particles, only a small percentage of them at the most have clustered 
into larger units. This experiment shows also that it is legitimate to apply 
the theory of widely separated particles to systems of a rather high density 
if the particles of the system are only slightly non-uniform. 

The results of this experiment were confirmed by a measurement with 
the electron microscope. The micelles appeared as approximately 
spherical particles with a rather uniform diameter of about 120 A. The 
sphere of radius of gyration of 50 A has a diameter of 130 A. 

Porod [137] found that colloidal molybdic acid in the dry state gave a 
different pattern from that of the solution, the pattern showing a ring 
of scattering r1tther than the pattern of isolated particles. The difference 
in the behavior of this colloid as compared to silver may be associated 
with the fact that, whereas flocculation of silver is irreversible, it is 
reversible for molybdic acid. 

6.4. SUBMICROSCOPIC HETEROGENEITIES IN SOLIDS. APPLICATIONS 
TO PHYSICAL METALLURGY 

The existence of small-angle scattering is in a very general way charac­
teristic of the existence of submicroscopic heterogeneities in the scatterer. 
The example in which the scatterer is composed of small, separate particles 
is only a particular case of which we have seen numerous applications 
(solutions, suspensions, and powders). A continuous solid can also give 
rise to low-angle scattering if its electronic density shows fluctuations, the 
particular conditions having been analyzed in §2.4.l. We have already 
mentioned several examples in which the sample was not composed of 
distinct particles (certain fibers of high polymers). We shall now con­
sider certain metals and alloys that offer interesting examples of hetero­
geneities. Often these heterogeneities have been disclosed only by the 
phenomenon of small-angle scattering. 

6.4.1. HETEROGENEITIES IN PURE METALS 

We shall not consider here either metals in the form of fine powders or 
metals in the form of colloidal grains, since these problems have already 
been discussed. 

Several experiments (Blin and Guinier [11']; Blin (1954); Hayes and 
Smoluchowski [74'"]) have shown that a piece of metal that to the eye or 
even to the microscope is pure, sound, and homogeneous can give rise to 
small-angle scattering. Since this is very weak in intensity, its study 
requires a well-designed apparatus from which all parasitic scattering has 
been eliminated. A Geiger-Muller counter must be used as the detector, 
since photographic techniques are not of high enough sensitivity. The 
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sample should be in the form of a thin plate whose thickness is approxi­
mately the optimum thickness for transmission experiments (p. 88), that 
is, of the order of some hundredths of a millimeter. 

This scattering appears when the metal has been severely cold-worked, 
particularly by tensile elongation. It has been observed on nickel, 
copper, aluminum, and zinc. The scattering is of the continuous type, 
the intensity decreasing with increasing distance from the center of the 
pattern. The curve traced with the usual coordinates (log J(h2)) shows a. 
rather long linear part that corresponds to a radius of gyration of the 
order of 6 A. When the cold-worked metal is annealed, the scattering at 
small angles is not modified until recovery has been completed. Then 
the scattered intensity becomes stronger at very small angles and decreases 
much more rapidly with increasing scattering angle, so that the curve of 
log /(h.2) corresponds to a much larger radius of gyration. 

Thus far we have not tried to interpret these observations in terms of 
the structure of the sample. The values of the radii of gyration serve 
only to summarize the facts in a rather convenient form that allows us 
to contrive probable models of the structure. Lattice defects, such as 
dislocations, introduced by deformation of the metal, produce at the most 
only very small variations in density, and these a.re certainly so localized 
that they cannot be invoked to explain this scattering phenomenon. 
Moreover, such defects produce a broadening of the Debye-Scherrer lines, 
and actually there is no positive correlation between this broadening and 
the observed scattering at small angles. Vacancies or missing atoms in 
the lattice also correspond to a radius of gyration that is too small. We 
are therefore led to the assumption that the heterogeneities found in a 
deformed metal are submicroscopic cavities formed by the coalescence of 
vacancies, these cavities, if they are spherical, having a diameter of the 
order of 15 A. It is natural to assume that the form of the cavities would 
depend on the directions of the stresses experienced by the metal. Their 
shapes, therefore, would not be spherical, but it is difficult to describe them 
more precisely. 

These cavities are not sensitive to anneals at low temperatures at which 
the atomic mobility is small, since the lattice could then become more 
perfect only by local rearrangement of the atoms. At high temperatures, 
at the point at which the metal is transformed by the appearance of new 
recrystallized crystals, these cavities either disappear or are eventually 
fused together to give a smaller number of much larger cavities retained 
in the recrystallized metal. 

The hypothesis of the existence of cavities in the deformed metal is 
confirmed by the slightly smaller density of the metal after cold-working. 
However, such measurements of density are very critical and are not 
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sufficiently precise, so that apparently this new aspect of imperfections 
in metals can be more easily studied with X-rays. 

6.4.2. HETEROGENEITIFS IN SOLID SOLUTIONS 

The schematic structure of a solid solution is the following: the atoms 
of the various constituent metals are distributed on the lattice points of a 
single lattice. Such a solution is certainly homogeneous on a microscopic 
scale but is not so on an atomic scale. The heterogeneities can become 
important if the distribution of atoms is not perfectly random, as, for 
example, if the atoms of one type tend to agglomerate into clusters. In 
such circumstances, moreover, the predominance of one type of atom in a 
cluster can lead to a deformation of its lattice, the atoms being displaced 
more or less from the lattice points of the average lattice of the solid 
solution. These irregularities or defects in periodicity, arising both 
from the nature of the atoms and from their positions, modify the 
crystalline reflections and cause abnormal diffuse scattering outside the 
positions of the Bragg reflections. In particular, small-angle scattering 
can appear. 

The study of the real structure of a solid solution requires a knowledge 
of the complete pattern of scattering and diffraction and not solely a 
knowledge of the small-angle region of the pattern. Nevertheless, in the 
following paragraphs we shall consider only the consequences of small­
angle scattering in order to show how simply this furnishes conditions 
that have to be satisfied by the structure models contrived to explain the 
total pattern. It is therefore essential that the small-angle part of the 
X-ray pattern be not neglected in any such study. It is impossible to 
explore the very-small-angle region with standard large-angle diffraction 
apparatus, and consequently investigators who have limited themselves 
to such equipment have often been led to propose structure models that 
are in contradiction with the results drawn from the simple appearance 
of the small-angle scattering patterns. 

6.4.2.1. Equilibrium Solid Solutions 

When an alloy is at a temperature such that the solid solution is the 
only equilibrium phase and at which there is no ordered state, as, Jor 
example, all dilute solid solutions, it was thought for a long time that the 
equilibrium state of the solid solution was one of perfect disorder. More 
precisely stated, this means that the nature of an atom has no influence 
at all on the nature of the atoms that occupy neighboring sites in the 
lattice. 

The number of atoms of one type in a volume containing a given number 
of lattice sites will undergo statistical fluctuations about the mean value 
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required by the composition of the alloy. There is a certain probability, 
therefore, that a group of atoms of one type can be accidentally produced 
on a group of neighboring sites. This probability can be easily calculated, 
and it of course rapidly becomes very small when the number of sites in 
the group increases. These fluctuations of composition correspond to 
local fluctuations of electronic density and thus cause a scattering at small 
angles. 

A simple calculation shows that this scattering is independent of the 
scattering angle.1 If the sample is a binary alloy, AB, containing p 
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Fig. 69. Scattered intensity from an equilibrium solid solution of 
Al-Ag (20 per cent Ag by weight) at two temperatures. (Walker, 

Blin, and Guinier [169].) 

atomic per cent of atoms of type B, the scattered intensity per atom of the 
solid solution is: I = I.p( 1 - p) (f A - f nl 2, where f A and f B designate 
the scattering factors of the two types of atoms, equal to the atomic 
numbers at zero angle, and where I. is the intensity scattered by one 
electron. This formula, first deduced by Laue, is a particular application 
of the general relation, equation 2.72. 

The intensity of this scattering is very weak. Even in the favorable 
circumstance of an equiatomic mixture of atoms of very different atomic 
numbers, it is just at the limit of the intensity measurable with a very 
sensitive Geiger-Miiller counter-equipped apparatus. 

Walker, Blin, and Guinier [169] measured the scattering from an Al-Ag 
alloy containing 20 weight per cent Ag at a temperature at which the 
solid solution is in equilibrium (T > 450° C.). The scattered intensity 
shows a maximum at zero-angle and is considerably stronger than the 
intensity predicted by Laue's equation. The maximum in the scatter­
ing at zero-angle becomes less pronounced at higher temperatures (Fig. 
69). These experiments show that the atoms are not distributed com­
pletely at random. The atoms of silver have a tendency to bunch 

1 Aside from the slow decrease with angle due to the variation of the atomic 
scattering factors. 
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together and form very small nuclei rich in silver. As we have already 
stated, such nuclei can be produced in a perfectly disordered crystal by 
statistical fluctuations, but the experiment proves that there are more 
such nuclei than would be predicted by the statistics of an ideally dis­
ordered state. These results are in agreement with the theoretical 
discussion of binary solid solutions given by Fournet (1953a). The very 
slow decrease of the scattered intensity with increasing angle allows the 
inference that the nuclei are very small. 

The value of a radius of gyration would not have much meaning, since 
these nuclei are certainly non-uniform both in size and shape. There is a 
special method for interpreting the experimental data in this case which 
was first used to determine the degree of short-range order in solid solutions. 
By means of a Fourier transformation of the experimental curve we can 
determine the probability of finding two atoms of silver at distances 
equal to those of first neighbors, second neighbors, etc., in the lattice. 
This is related to the function y(r) introduced in §2.4.3. This method, 
however, requires a knowledge not simply of the scattering curve at small 
angles but of the total scattering curve. Another method consists of 
calculating the function I(h) theoretically and comparing this with the 
experimental curve (Fournet (1953b)). The complete solution of the 
problem thus extends beyond our particular subject. Nevertheless, 
from the small-angle scattering we can obtain qualitative proof of the 
existence of clusters of atoms, and it can be immediately seen that these 
clusters can only be of small size. 

6.4.2.2. Supersaturated Solid Solutions: Age-Hardening 

The heterogeneities that we have discussed so far have been rather 
small and, consequently, have produced a small-angle scattering that is 
very weak in intensity and difficult to study. Intense scattering 
phenomena have been observed, however, for certain supersaturated 
solid solutions, that is, solutions that are out of the region of single-phase 
equilibrium. 

Let us consider a binary solid solution, AB, for which the limit of 
solubility of B in A increases with temperature. The solid solution at a 
given composition is in equilibrium above a temperature T 0 (Fig. 70); 
it is in this region of temperature that the experiments described in the 
preceding section have been made. When this solid solution is brought 
to room temperature by quenching, it is no longer in the equilibrium 
state; indeed, the room-temperature equilibrium state consists of two 
phases, a solid solution r:t. of normal concentration and a {J phase in which 
the excess dissolved B atoms are assembled. 

By thermal treatments at fairly low temperatures (T < T 0) the solid 
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solution can be made to evolve towards the stable state. Generally the 
most stable state, corresponding to the precipitation of the {J phase, is 
not produced directly. The precipitation is preceded by intermediate 
stages in which the excess atoms are clustered together but do not yet 
form the true final precipitate. These structural transformations are 
shown by a betterment of the mechanical properties of the alloy called 
age-hardening. 

The heterogeneities of the hardened alloy are too small in size to be 
visible to the microscope, but they can cause observable small-angle 
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Fig. 70. Schematic phase diagram of an age-hardening alloy. 

scattering. This scattering plays a fundamental role in the study of 
age-hardening, a phenomenon that is not only of scientific interest in the 
development of the physics of metals but also of considerable technical 
interest, in that it affects many applications of light alloys. As we have 
already pointed out, it is somewhat artificial to isolate the study of 
scattering at small angles from the rest of the pattern. However, we 
shall stress particularly the direct information that the . small-a.ngle 
scattering can provide, especially when the simplicity of the phenomena 
makes the method useful for technical applications. 

6.4.2.3. Structural Characteristics Directly Related to the Small-Angle 
Scattering 

The difficulty in studies of the structure of hardened alloys a.rises from 
the simultaneous presence of lattice deformations and local changes in 
composition produced by the clustering of the dissolved atoms. It is for 
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precisely such a condition that' an interpretation is facilitated by the 
consideration of small-angle phenomena. This follows from two prop­
erties of small-angle scattering which, in view of their importance in 
this matter, we shall recall at this time. 

J . 8mall-angle scattering depends primarily on heterogeneities of com­
position and little, if at all, on deformations of the lattice. A schematic 
example will demonstrate this. 

Let us suppose that in the lattic.e of a solid solution the dissolved B 
atoms assemble in irregularly arranged small clusters or zones without 
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Fig. 71. (a) Structure of a zone without lattice deformation. Foreign 
atoms have clustered on the matrix lattice sites. (b) Inclusion in the 
matrix lattice of a grain with a different lattice but with the same 

composition. 

producing any deformation of the general lattice (Fig. 71). The local 
heterogeneities, in which the electronic density is different from that of 
the surrounding medium, will cause small-angle scattering similar to that 
produced by sm~ll, isolated particles of the same exterior form. But, in 
addition, the small particles in this case are small crystals; they will 
therefore produce high-angle diffraction spots also, these being somewhat 
enlarged as a result of the small particle size. It can be shown ( §5.1) that 
each point in the reciprocal lattice, including the origin or (000) point, is 
replaced by a small diffracting region centered on each point. This is the 
explanation of the broadening of Bragg diffraction spots. The essential 
conclusion to be drawn from this calculation is that the regions around 
each of the points are identical, any one being derivable from any other 
by a simple translation. Thus, if the alloy shows heterogeneity without 
deformation, the study of the scattering in the neighborhood of the center 
gives all the information that can be furnished by X-ray diffraction. 

Now let us consider as a second example the opposite case, deformation 
in a lattice of uniform composition. Let us suppose that the lattice of a 
homogeneous solid solution includes regions in which the lattice has 
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slightly different parameters from those of the matrix. The fluctuations 
of the parameters are necessarily small, since metals always have a com­
pact structure, so that the density of the medium can undergo only very 
small variations. Therefore, since the whole metal has a quasi-constant 
density, there is no scattering at the center of the pattern. On the other 
hand, the Bragg angle of a given high-angle reflection will vary for the 
regions with different lattices, the variations in parameters producing an 
effect which is greater, the larger the Bragg angle of the reflection (the 
higher the indices of the reflection). The primary reciprocal lattice 
points will be surrounded by a region of diffraction whose extent will 
increase in proportion to the distance of the point from the center. The 
center itself is not surrounded by any scattering region. 

Another type of deformation that is often found in face-centered cubic 
metallic structures is the slippage of (111) planes over one another. This 
causes the formation of more or less extended regions with a hexagonal 
close-packed structure which are called stacking faults (Barrett (1952), 
p. 259). These stacking faults produce regions of scattering around 
certain reciprocal lattice points that are elongated along the [111] lines of 
the reciprocal lattice normal to the (111) planes showing the faults. 
There is no scattering around the center, since, regardless of the mode of 
stacking of the ( 111) planes, the density remains rigorously constant at all 
points of the metal lattice. 

2. The two simple examples discussed above form extreme cases 
between which are those structures generally found in practice, where a 
variation in composition is connected with a deformation of the lattice, 
either in that the B atoms have a different diameter from the A, or in that 
there is a tendency of the cluster to form a crystalline structure different 
from that of the original lattice. The distribution of the regions of 
scattering in reciprocal space can then become very complex, but to a 
first approximation the scattering in the neighborhood of the center.depends 
only on the exterior surf ace of the heterogeneous regions and not on their 
internal structure. Hence, if in the example of Fig. 7lb we suppose that 
the atoms of the zones are B atoms or at least a mixture containing a large 
proportion of B, the small-angle scattering phenomena will be exaetly the 
same as for the case of Fig. 7la. The variations of the parameters 
will have no influence on this scattering. 

In order that the small-angle scattering be intense enough to he 
detectable, it is necessary that the variations in electronic density be large 
and, consequently, that there be a large difference between the atomic 
numbers of the alloying elements. When these elements are adjacpnt or 
near neighbors in the periodic table, the method is not applicable. Thi;; is 
true for alloys sueh as Al-Mg or Al-Si, and also for Cu-Zn ancl Ni-Fe. 
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6.4.3. EXAMPLES OF SMALL-ANGLE SCATIERING BY 
AGE-HARDENING ALLOYS 

203 

It is found that, in the different systems of age-hardening alloys that 
have been studied, the small-angle scattering patterns present quite 
varied appearances, showing that the process of precipitation varies 
according to the nature of the atoms. We shall give examples correspond­
ing to two quite distinct types, stressing only the manner in which the 
X-ray technique is utilized, and not the results pertinent to the field of 
physical metallurgy. 

6.4.3.1. Aluminum-Silver Alloy: First Stage of Hardening 

The metal is an alloy containing 20 weight per cent of silver. After 
an anneal at a temperature greater than 450° C. (the temperature at 
which the alloy becomes homogeneous) the sample is brought to room 
temperature by a rapid quench and then studied after anneals of various 
lengths at temperatures of the order of 50 to 200° C. 

The sample is prepared in the form of a thin foil of suitable thickness 
(0.04 mm. for Cu Koc radiation). It is preferable, as we have already 
pointed out, to begin the investigation with the use of photographic 
techniques, since it is not possible to predict a priori the appearance of the 
low-angle scattering in these cases. 

Two facts can be drawn from the first observations ([l 70], Walker and 
Guinier (1953), Belbeoch and Guinier (1954)): 

1. The patterns are the same regardless of the state of crystallization 
of the metal, whether it be in a microcrystallized state (cold-worked) or 
whether it be a single crystal of arbitrary orientation. 

2. The scattering does not decrease continuously from a maximum at 
zero-angle (Fig. 72). Instead, when the height of the beam has been 
reduced sufficiently, the pattern has the form of a rather sharply defined 
ring whose diameter varies according to the thermal treatment given the 
sample. The mean scattering angle of the ring corresponds by Bragg's 
law to a distance of the order of magnitude of 50 A. We have already 
called attention to other low-angle scattering patterns that contained a 
ring of scattering ( §4.1.2.2), but the ring is more sharply defined in this 
case, and, more important, the intensity of the scattering inside the ring 
is very weak near the center. 

It is obvious that one must try to interpret these observations in terms 
of the formation of clusters of silver atoms. Since the orient~tion of the 
crystal has no effect on the appearance of the pattern, it can be concluded 
that these clusters are isotropic and have a symmetry which at least on the 
average is rigorously spherieal. But, in order that the scattering not be a 
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maximum at zero-angle, it would be necessary the.t the particles show 
a very strong interaction between themselves, analogous to the inter­
action between the molecules of a liquid. This we.a the interpretation 
advanced by Riley rt41 l for the ring observed on the small-angle patterns 
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Fig. 72. (a) Small-angle scattering from Al-Ag (20 per cent Ag by 
weight) water-quenched from 520° C. (b) A graph of intensity vs. 

scattering angle for this sample. 

of certain carbons. However, this model of a structure does not seem 
very probable for an alloy. A ring of such sharpness could only come 
from close-packed particles of a very uniform size. How can this 
regularity be justified?. In addition, when the alloy is annealed, the ring 
remains sharply defined and contracts. This would mean that the 
clusters become uniformly larger and change into another close-packed 
arrangement in which the interparticle distances are somewhat greater. 
Such a transformation is difficult to imagine. 

Another model, which is more acceptable, has been proposed by Walker 
and Guinier (1953). It is assumed that there are independent particles 
that do not give rise to interparticle interferences, and that the single 
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particle has such an internal structure as to give a ring-type pattern 
instead of the classical continuous scattering curves. We have already 
called attention to an analogous interpretation for hemocyanine (p. 17 4). 
Actually, if the particles we considered in Chapter 2 have continually 
decreasing scattering curves, it is because their structure can be assumed 
to be of effectively uniform depsity. The scattering curve can become 
much more complex, however, if there are regions of different electronic 
density in the interior of each particle. 

·when the silver atoms cluster around a particular point in the solid 
solution, they migrate by diffusion, but as the annealing temperature is 
not very high the atoms are not very mobile. It is therefore easy to 
imagine. that the silver atoms clustered into a nucleus leave a shell-like 
region emptied of silver atoms. Thus the schematic particle would be 
made up of a spherical nucleus of high electronic density p1 surrounded by 
a spherical shell of a density p2 that is less than the average density Po of 
the medium in which the particle is immersed. This concept requires 
the supplementary condition that f p dv = Po V, since all the atomic 
movements have taken place at the interior of the total volume V of 
the particle. 

Let us consider the following simple model: the two parts of the particle 
are defined by two concentric spheres of radii R1 and R2. The condition 
relating Pv p2, and p0 is: 

or 

In a calculation of the scattering, the particle can be replaced by a set of 
two superposed concentric spheres, one of radius R1 and density (p1 - p2), 

and the other of radius R 2 and negative density, -(p0 - p2). The 
scattered intensity will be the square of the algebraic sum of the amplitudes 
scattered by these two spheres. The amplitudes at zero-angle are equal 
and opposite, as is seen from equation 2.10, but the scattering due to the 
small sphere R1 decreases more slowly with angle than that of the large 
sphere R 2• The curve of the intensity, therefore, starts from zero at 
zero-angle, and it obviously again becomes zero at large angles, so that it 
shows a maximum quite similar to the one found experimentally (Fig. 73). 

This model is obviously arbitrarily chosen, but a better model of a 
spherically symmetric, heterogeneous particle can be obtained by 
quantitatively determining the electronic density distribution p(r) that 
would produce the observed scattering curve. 
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Equation 2.13 gives the scattPrcd intensity as 

[ r '° sin hr ] 2 
l(h) = 1,(h) Jo p(r)-,;;-- 47Tr2 dr 

A Amplitude 

h 
(a) 

h 
(b) 

Fig. 73. (a) The amplitude of scattering for two spheres: A,, a. 
sphere of radiuR R 1 and density (p 1 - p 2 ); A,. a sphere of radius R 0 

and density ( p0 - p 2). (b) Scattered intensity for the concentric spheres 
model: I= (A1 - A 2) 2• 

where h = (47T sil1 ())/A. The density p(r) can be obtained from the 
experimental curve l(h) by a Fourier transformation: 

I 100 Jl(h\ p(r) = - 2- h --' sin hr dh 
27T r o le(h) 

A second method of approach, which does not require the assumption 
of spherically symmetric particles, is to use equation 2.21 and the Fourier 
transform of hl(h), 

ry0(r) oc l 00 
hl(h) sin hr dh 
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If J(h) is normalized so that y 0 (0) = 1, then y 0 (r) is related to the prob­
ability of finding an atom of silver a distance r away from another atom 
of silver (Fig. 74). 

In reality the distribution of matter in the interior of the particles is not 
continuorn~. The aluminum and silver atoms are situated on sites of the 

1.0 

Fig. 74. The probability of finding an Ag atom at a distance r from 
another Ag atom in the quenched AI-Ag alloy. 

known lattice, and the problem is to find their statistical distribution. 
The solution to this problem given by Cowley (1950) leads to similar 
equations. 

Theoretically, the same results about the structure of the solid solution 
could be obtained by using the phenomena of the scattering around any 
Bragg reflection of the crystal, but it is much easier experimentally to use 
the low-angle part of the pattern. Tne principal advantage of this is that 
the metal can be used directly regardless of its state of crystallization. 
The method can thus be applied to cold-worked metals or to metals in 
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the form of very fine crystals such as are used in metallurgical techniques. 
A determination of the structure of a hardening alloy of this type can be 
made even on samples usually employed for other physical or mechanical 
tests. 

6.4.3.2. Aluminum-Silver Alloy: Second Stage of Hardening 

When the same Al-Ag alloy is given anneals at higher and higher 
temperatures, the ring decreases in size until only an intense blur at very 
small angles is observed; then finally a completely different phenomenon 

Fig. 75. Small-angle scattering from Al-Ag, water-quenched from 
520° C. and annealed 10 days at 140° C. 

appears. When the sample is polycrystalline, with not too fine a crystal 
size, the pattern contains several streaks of scattering, the direction and 
number depending on the orientation of the crystals (Fig. 75). A dis­
placement or rotation of the sample will modify the number and orienta­
tion of the observed streaks. A study of this effect should be made with 
a monocrystal whose axes can be oriented at will with respect to the 
incident beam. 

The object of the experiment is to find the form and extent of the 
scattering regions around the center of reciprocal space and to determine 
their orientations with respect to the axes of the reciprocal lattice of the 
solid solution (this is a face-centered cubic crystal with parameters 
practically equal to those of aluminum). The result of the study is shown 
in Fig. 76. The regions ofscattering are directed along [Ill] axes. They 
are very narrow, and their length depends on the thermal treatment of 
the alloy. More exactly, the intensity decreases with increasing angle, 
the scattering for Cu Ka. being perceptible up to scattering angles of the 
order of 2° or 3° for the longest streaks. 

The observations on the polycrystalline samples mentioned above are 
then explained in the following manner: The reciprocal space of the 
sample contains a number of scattering regions in the form of straight 
lines centered on the origin, the number being equal to 4 times the number 
of crystals irradiated by the incident beam. It is known that the pattern 
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for a given position of the sample can be depicted by the cut through 
reciprocal space of the Ewald sphere of reflection. Near the center of 
the pattern this spherical surface can be replaced by the plane normal to 
the direction of the incident beam. If there are a sufficient number of 
crystals and if these are randomly oriented, there are always a certain 
number of scattering regions that are very near this plane normal to the 
beam. In order that a streak may appear, it is necessary theoretically 
that the scattering regions be in this plane. In practice, as a result of the 
divergence of the rays of the primary beam, it is sufficient that these 
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Fig. 76. The representation of the observed streaks in the reciprocal 
lattice of the matrix Al-Ag crystal. 

domains be close to the plane. A certain number of streaks will be 
observed whose directions cannot be predicted a priori, since the orienta­
tions of the crystals are unknown. If the number of irradiated crystals is 
too large, as in a cold-worked material, the streaks will be very numerous 
and very weak, since the individual crystals will be quite small. As a 
result the streaks will merge to form a continuous scattering that is 
spread out but too weak to be detectable by photography. 

Let us return to the consideration of a single crystal. What are the 
particles that can explain the small-angle scattering in reciprocal space 
shown in Fig. 76. The anisotropy of the pattern proves that, unlike the 
particles in the first stage, these are anisotropic and are oriented with 
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respect to the matrix crystal. In §2.1.3.4 and §4.1.1.2, it was shown that 
a wide, thin platelet gives a pattern of scattering that is elongated along 
the normal to the platelet. The data of Fig. 76 are then explained by 
supposing that the matrix crystal contains four series of particles in the 
form of platelets parallel to the four sets of (Ill) planes. This is a par­
ticula:dy acceptable supposition, since the precipitates visible to the 
microscope at a later stage also have the form of platelets parallel to the 
(111) planes (Widmanstatten structure) (Barrett (1952), p. 542). 

The diameter of the pl,atelet determines the thickness of the scattering 
region, or the width of the streak on the film. This measured width 
appears to be determined uniquely by the experimental conditions, such 
as crystal dimensions and beam dimensions. Consequently all that can 
be said is that the diameter of the platelet is at least of the order of a 
thousand angstroms. The thickness of the platelet determines the length 
of the streak. If the curve of the variation of intensity along the streak 
were known, theoretically we could apply equation 2.44 to determine a 
mean inertial distance with respect to the plane of the platelet. It is 
more simple and satisfactory to evaluate the length of the streak, e, in 
angular units and then to obtain the thickness of the platelet by means 
of the following reasoning: The scattering by a thin, wide platelet of 
thickness d will become zero at an angle equal to e = Af d. Therefore the 
order of magnitude of the thickness of the platelet is d = )./e. In the 
case described above, the thickn'ess is determined in this way to be 
.-30 to 50 A. The platelets become thicker as the annealing continues. 

Here again the consideration of the small-angle scattering has given 
no information about the internal structure of these platelets. The 
large-angle patterns show that these are grains of a precipitate with a 
hexagonal structure in which the lattice is derived from that of the solid 
solution by a slippage of (lll) planes over one another. The diffraction 
spots of these precipitates are surrounded by regions of scattering that 
are also directed along the [Ill] axes. These regions are much longer 
than the region around the center of the pattern. In order to explain 
these high-angle scattering phenomena we must suppose that the platelets 
of precipitate parallel to ( 111) planes do not have a thickness of more than 
10 A, a figure that is in contradiction with the small-angle scattering data. 
The correct interpretation, which explains all the observations, is that 
the platelets have the dimensions determined from the small-angle 
scattering but that their crystalline lattice is not perfect. The principal 
cause of the high-angle streaks of scattering along the (Ill) directions 
is the presence of "stacking faults" in the precipitates (Barrett (1952)). 

Although the complete study required tha~ the investigation be carried 
out on a single crystal, let us observe that, once the facts just established 
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are known, a simple small-angle scattering experiment on a metal without 
special preparation allows us to determine the actual state of the alloy, to 
distinguish between the two stages of hardening, and to obtain in a simple 
manner quantitative results on the dimensions of the clusters or sub­
microscopic grains of precipitate. 

6.4.3.3. Aluminum-Copper Alloy 

Several other systems give phenomena analogous to those of the 
aluminum-silver system, but this is not a general precipitation process. 
Frequently the low-angle scattering patterns are very different in appear­
ance, and often they are less easy to measure and interpret than in the 
example we have just discussed. 

An aluminum-copper age-hardening alloy in not too fine a crystalline 
form gives a pattern of streaks coming from the center even in the first 
stage of hardening [64 ], [274]. These streaks are directed along the 
[100] axes of the crystal of the solid solution; they can be very long 
(from 10° to 15° with Cu Krt. radiation) and they are ofrather low intensity. 
In order to study them in practice, it is necessary to work with a single 
crystal. 'Ve can deduce from the form and orientation of these streaks 
that the heterogeneous regions are very thin platelets parallel to the three sets 
of (JOO) planes. The simplest region that could be imagined would be 
formed of clusters of copper atoms on one or two (100) planes of the solid 
solution lattice in zones having a diameter of several hundred angstroms. 
Figure 77 reproduces the low-angle part of the pattern corresponding to 
an alloy annealed at 100° C. for 100 hours and oriented so that the [100] 
axis is parallel to the incident beam; the two other fourfold axes are 
horizontal and vertical, respectively. The two branches of the cross 
correspond to two of the three series of zones; the third, oriented normal 
to the beam, should theoretically give a circularly symmetrical scattering, 
but it is too limited in diameter to be visible. It is easy to calculate the 
distribution of scattering from a thin platelet parallel to the direct beam.1 

We can thus obtain the dimensions of the platelet that gives a low-angle 
scattering identical to that observed. It is by this type of calculation, 
which we shall not reproduce here, that the zone dimensions reported in the 
first papers [64] were obtained. But this model of zones of clustered 
copper atoms docs not allow an explanation of the other abnormal and 
complex scattering phenomena observed at high angles. In order to 
explain these it is necessary to assume that the lattice of the zones is 
deformed. Since the copper atom is much smaller than the aluminum 

1 It is curious to discover that in this very particular case we cannot make the 
approximation usually rnado in Chapter 2, which was to neglect the variation of the 
direction of the vector h with the suattering angle. 
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atom, it seems reasonable that a clustering of copper would cause such a 
contraction in the spacing of the crystalline planes. 

The low-angle scattering of this alloy extends to rather large angles, 
actually joining the other regions of scattering. Thus the single "cross" 
of Fig. 77 cannot be isolated from the other regions of scattering that were 
not represented there. The procedure for separation of the effect of the 
heterogeneity from the effect of the lattice deformation is not applicable 
here. An attempt at a more complete explanation is no longer within 

-,f i.,.h,,.· 
,_ 

Fig. 77. Small-angle pattern from a single crystal of an Al-Cu alloy 
(4 per cent Cu by weight). The [100) axis is parallel to the incident 
beam and normal to the film, and the [010] axis is vertical. Mo Ka. 

radiation; sample-to-film distance, 4 cm. Enlarged 2 X. 

the compass of a discussion of small-angle scattering but rather is in that 
of crystalline imperfections in general. 

It is no less true, however, that, qualitatively and even semiquanti­
tatively speaking, an examination of the small-angle scattering gives the 
orientation, the form, and the order of magnitude of the dimensions of the 
heterogeneous regions. 

The examples treated above show the capabilities of small-angle 
scattering in a study of a solid state reaction. We could also find applica­
tions to non-metallic substances. When the presence of heterogeneities 
of a dimension less than several hundred angstroms is suspected, the 
X-ray method should be attempted. Let us point out that the zones of 
clustering in hardening alloys have been demonstrated only by X-ray 
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methods; they are not visible to the electron microscope, even though 
they are of a size greater than the resolving power of this instrument. 
This is due to the fact that the zones are not sensitive to the methods of 
etching that have so far been employed. 

6.5. ABSOLUTE MEASUREMENTS OF THE INTENSITY OF SCATTERING 
AT ZERO ANGLE. MEASUREMENTS OF THE COMPRESSIBILITY OF 
A FLUID 

In the majority of the applications cited up to this point only a know. 
ledge of the form of the scattering curve is required. In several cases we 
have seen that a comparison between two scattering curves had to be 
made (p. 190), but the only requirement was that the incident intensity be 
constant, the absolute magnitude not being needed. 

It is possible to determine experimentally the ratio of the scattered 
intensity to the incident intensity. These absolute measurements 
( §3.5.3) are difficult because of the disproportion between the two quanti­
ties to be measured. We have shown, nonetheless, how these measure­
ments can be successfully made with a reasonable accuracy, of the order 
of 5 per cent. 

The formulas employing the absolute value of the limiting intensity were 
established in Chapter 2 and the possible applications follow from these. 

In the case of identical, widely separated particles, the equation for 
the limiting intensity is 

l(O) = I.Nn2 

I,, the intensity scattered by one electron, can be calculated as a function 
of the incident intensity by means of Thomson's equation (p. 6) (I.(O) 
= 7.9 X l0-26/ 0p-2); N is the total number of particles, and ni8 the number 
of electrons per particle. l(O) can certainly not be determined directly by 
experiment, but if the curve of log /(h2 ) is linear at low angles it can 
easily be obtained by extrapolation. The total mass of the scattering 
particles gives the value of the product, Nn. The small-angle scattering 
experiment will therefore give the value of n, which, let us recall, can be 
used to describe the form of the particle more precisely ( §4.1.1.1). 

If, on the other hand, the form of the particle is known, the volume 
of the particle, and thus n, can be determined from the radius of gyration. 
In such a case the X-ray measurement gives the value of N. In this way 
the number of particles or the concentration of particles in a sample can 
be determined. There are certain cases in which this method, complex 
though it is, is the only possible method. Let us cite as an example the 
case of microcavities in cold-worked metals, in which Blin (1954) deter­
mined the total volume of the cavities by X-ray measurements. The 
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number of clusters of atoms in a hardening alloy can also be determined 
in this way. 

Another expression for the absolute value of the scattered intensity was 
given in §2.2.3.3 for the example in which the particles were molecules of a 
fluid (this expression is not restricted to macromolecules only). The 
relation (equation 2.74, p. 47) is 

-kT 
/(0) = I.(O)n2N -{1 

1.'1 

N is the average number of molecules irradiated; Tis the temperature of 

the fluid; v1, the average volume offered to each molecule (v1 = V/N); 
and {1 is the isothermal compressibility, 

{1 = _ ~ (oV) 
V oP T 

An interesting application of equation 2.74 is the experimental measure­
ment of the coefficient of compressibility of a fluid by X-rayB. This measure­
ment has recently been made for liquid helium at temperatures above and 
below the .A.-point (Tweet [162']). The intensity scattered by helium is 
very weak. However, since the intensity varies very little with scattering 
angle, the Geiger-Muller counter detector can be adjusted to receive very 
divergent beams, and this, together with the use of a powerful source (a 
rotating anode tube), makes the measurement possible. The container 
for the scatterer was filled successively with helium and with a gas that 
scattered as a perfect gas. The value of {1 could be derived from the ratio 
of the measured intensities and from the ratio of the densities. 

At 4° K. the scattered intensity showed a rather marked maximum at 
zero-angles (Fig. 78), just as is observed for all fluids in the neighborhood 
of their critical point (see Fig. 11 for argon). The value of {1 determined 
from these X-ray measurements agreed well with the value of the com­
pressibility as measured by completely different methods. 

At 2° K., below the .A.-point, the intensity does not vary perceptibly 
with the scattering angle, and is slightly higher than the value of (kT/v1 ){1 
by an amount greater than the experimental uncertainty. These experi­
ments show that the statistics of the helium atoms at this temperature 
are different from those of the normal gas, and they will serve IU! a test of 
theoretical predictions. 
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Fig. 78. The scattered intensity in absolute units for liquid helium 
above and below the A-point, at 4.16° K. and 2.0° K., respectively. 
The point EB indicates the theoretical value of the scattered intensity at 

zero-angle derived from equation 2. 74. (Tweet [162'].) 
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Approximation for ta.ii of low-angle scat­

tering curve, 67, 80, 115 
Argon, 48, 58, 59 

Be.binet's theorem, 38 
Beam stops, 121, 124 

for absolute measurements, 121 
Bragg's law, use of, 148 

Carbon hie.ck, 105, 188 
Catalysts, 192 
Cellulose, 177, 179, 180, 181, 183 
Characteristic function, isolated particle, 

12 
system of particles, 77, 78 

Che.rcoe.l, activated, 191 
Chrysotile, 105, 184 
Coiled cha.in molecules, 177 
Cold-worked mete.ls, 195 
Colle.gen, 184 
Collime.tors, 86 

optimum, 89 
with circular apertures, 91 
with rectangular apertures, 91 
with slits of infinite height, 86 

Colloidal solutions, 194 
Complementary objects, 38, 81 
Compressibility, 47, 213 
Compton scattering, 5 
Correction, beam height, beam of finite 

height, 118 
beam of infinite height, 114, 116 

beam width, 112 

Crysta.ls, 52 
Cylinder, homogeneous, 19, 27 

Debye-Scherrer lines, 163, 196 
Debye's model (see Spheres, he.rd) 
Disc, homogeneous, 21, 23 
Distance of heterogeneity, 81, 158 

Egg yolk, 105, 176 
Electron microscope, 161 
Ellipsoid, homogeneous, 19, 26, 169 
Ellipsoids, distribution of sizes, 154 
Equation of state, 42, 46 
Exponential approximation, 25, 27, 30, 

114, 128 

Fibers, 177, 185 
Filters, be.le.need (Ross), 85, 95 
Flocculation, 194 
Fluids (see Particles) 
Fluids, theories of, 41, 45 
Form factor, 3 
Fourier transformations, 4, 16, 18, 57, 

206 

Globulin, 169 
Gold, colloidal, 162 
Guinier's law (see Exponential approxi­

mation) 

Helium, liquid, 214 
Hemocye.nine, 105, 174 
Hemoglobin, 104, 105, 130, 137, 144, 170, 

171, 173, 176 
Heterogeneous matter, 70 
High polymers, 176 
Hypotheses Hi and H2, 30, 60 

Inertial distance, 30 
Inhomogeneity, range of, 158 
Ionization chamber, 123 

Counter, Geiger-MUiler, 85, 87, 89, 93, 121 
proportional, 96 

>.-point, 214 
Latex, 131, 162 

267 



268 SUBJECT INDEX 

Laue scattering, 65 
Limiting value, zero-angle intensity, 46, 

71 

Macromolecules, solutions of, 167 
Maximum in diffraction patterns of fluids, 

50, 140, 147, 171 
Metals, cold-worked, 195 
Microcavities in metals, 196, 213 
Molecules, 167 

coiled chain, 177 
Monochromatic source, Al Ka, 94 
Monochromatization by total reflection, 

95, 108 
Monochromators, 96 

bent crystal, 100 
plane crystal, 96 

Fankuchen cut, 97 
point focusing, 104 
two crystal, bent, 102 

plane, 109 
Multiple scattering, 5 

Naphthalene black, 159 
Nickel, catalytic, 192 
Nylon, 183 

Paracrystal, 143 
Parasitic scattering, 84, 87 
Particle, centrosymmetric, 6, 8 

fixed, 5, 28 
moving, 7, 24 
spherical, 10, 28 

Particles, identical and densely packed, 
experiment, 135 

theory, 33, 40 
identical and widely separated, exper­

iment, 126 
theory, 35 

in a homogeneous medium, 40 
mixtures of several types, 65, 149 
oriented, experiment, 134 

theory, 23, 60 

Photographic detection, 87, 89 
Polyamides, 185 
Polyethylene, 183 
Polymers, high, 176 
Potential energy, interparticle, 41 
Probability function P(r), 40, 146 
Proteins, 167 

Radius of gyration, 24, 26, 127, 130, 149, 
167, 169, 189 

Rayon, 183 
Reciprocity principle, 38 
Red cells, 105 
Rod, homogeneous, 20, 23 

Scattering, Thomson, 6 
Secondary maxima, 54, 130 
Silk, 186 
Silver, colloidal, 162 
Slits, construction, 120 

scattering from, 120 
Soap, 175 
Solid solutions, equilibrium, 197 

supersaturated, 199 
Specific surface, 156, 188, 194 
Sphere, homogeneous, 19, 20 
Spheres, distribution of sizes, 154 

hard, 43, 54, 58, 59, 137 
mixtures of different sizes, 68 

Stacking faults, 202, 210 
Statistical distribution of particles, 151 
Superposition principle, 42, 45 
Surface area, internal, 80 

particle, 13, 67 

Total reflection, 95, 108 
Total scattered energy, 18, 81, 110, 158 

Vacuum chambers, 123 
Virus molecules, 170, 172, 175, 184 
Viscose, 179, 182 

Zones, Guinier-Preston, 201, 204, 211 




